Учебное пособие по курсу «Нейроинформатика»
Шрифт:
324. Lee H.-L., Suzuki S., Adachi Y. et al. Fuzzy Theory in Traditional Chinese Pulse Diagnosis // Proceedings of 1993 International Joint Conference on Neural Networks, Nagoya, Japan, October 25-29, 1993.- Nagoya, 1993.- V.1.- P.774-777.
325. Levine D.S., Parks R.W., Prueitt P.S. Methodological and theoretical issues in neural network models of frontal cognitive functions // Int. J. Neurosci.- 1993.- V.72, N.3-4.- P.209-233.
326. Lichtman A.J., Keilis-Borok V.I., Pattern Recognition as Applied to Presidential Elections in U.S.A., 1860-1980; Role of Integral Social, Economic and Political Traits, Contribution No. 3760. 1981, Division of Geological and Planetary Sciences, California Institute of Technology.
327. Maclin P.S., Dempsey J. Using an artificial neural network to diagnose hepatic masses // J. Med. Syst.- 1992.- V.16, N.5.- P.215-225.
328. Macukow B. Robot control with neural networks // Artif. Intell. and Inf.-Contr. Syst. Rob.-89: Proc. 5th Int. Conf., Strbske Pleso, 6-10 Nov., 1989.- Amsterdam etc., 1989.- PP. 373-376.
329. Mirkes E.M., Svitin A.P. The usage of adaptive neural networks for catalytic activity predictions // CHISA - 10th Int. Congr. of chem. eng., chem. equipment design and automation. Praha, 1990. Prepr. B3.80 [1418]. 7 pp.
330. Modai I., Stoler M., Inbar-Saban N. et al. Clinical decisions for psychiatric inpatients and their evaluation by a trained neural network // Methods Inf. Med.- 1993.- V.32, N.5.- P.396-399.
331. Modha D.S., Heht-Nielsen R. Multilayer Functionals. Mathematical Approaches to Neural Networks. J.G.Taylor (Ed.). Elsevier, 1993. PP. 235–260.
332. Nakajima H., Anbe J., Egoh Y. et al. Evaluation of neural network rate regulation system in dual activity sensor rate adaptive pacer // European Journal of Cardiac Pacing and Electrophysiology.- Abstracts of 9th International Congress, Nice Acropolis - French, Rivera, June 15-18, (228), 1994.- Rivera, 1994.- P.54.
333. Narendra K.S., Amnasway A.M. A stable Adaptive Systems. Prentice-Hall, 1988. 350 p.
334. Neural Computers/Ed. by R. Eckmiller, Ch. Malsburg. Springer, 1989. 556 p.
335. Okamoto Y., Nakano H., Yoshikawa M. et al. Study on decision support system for the interpretation of laboratory data by an artificial neural network // Rinsho. Byori.- 1994.- V.42, N.2.- P.195-199.
336. Pedrycz W. Neurocomputations in relational systems // IEEE Trans. Pattern Anal. and Mach. Intell.- 1991.- 13, № 3.- PP. 289-297.
337. Pham D.T., Liu X. Statespace identification of dynamic systems using neural networks // Eng. Appl. Artif. Intell.1990.- 3, № 3.- PP. 198-203.
338. Pineda F.J. Recurrent bakpropagation and the dynamical approach to adaptive neural computation.
– Neural Comput., 1989. Vol. 1. PP.161–172.
339. Poli R., Cagnoni S., Livi R. et al. A Neural Network Expert System for Diagnosing and Treating Hypertension // Computer.- 1991.- N.3.- P.64-71.
340. Prechelt L. Comparing Adaptive and Non-Adaptive Connection Pruning With Pure Early Stopping // Progress in Neural Information Processing (Hong Kong, September 24-27, 1996), Springer, Vol. 1 pp. 46-52.
341. Real Brains, Artificial Minds/Ed. by J.L. Casti, A. Karlqvist. Norton-Holland, 1987. 226 p.
342. Reinbnerger G., Weiss G., Werner-Felmayer G. et al. Neural networks as a tool for utilizing laboratory information: comparison with linear discriminant analysis and with classification and regression trees // Proc. Natl. Acad. Sci., USA.- 1991.- V.88, N.24.- P.11426-11430.
343. Rinast E., Linder R., Weiss H.D. Neural network approach for computer-assisted interpretation of ultrasound images of the gallbladder // Eur. J. Radiol.- 1993.- V.17, N.3.- P.175-178.
344. Rossiev D.A., Golovenkin S.E., Shulman V.A., Matyushin G.V. Forecasting of myocardial infarction complications with the help of neural networks // Proceedings of the WCNN'95 (World Congress on Neural Networks'95, Washington DC, July 1995). PP. 185-188.
345. Rossiev D.A., Golovenkin S.E., Shulman V.A., Matyushin G.V. Neural networks for forecasting of myocardial infarction complications // Proceedings of the Second IEEE RNNS International Symposium on Neuroinformatics and Neurocomputers, September 20-23, 1995, Rostov-on-Don.
– PP 292-298.
346. Rossiev D.A., Golovenkin S.E., Shulman V.A., Matyushin G.V. The employment of neural networks to model implantation of pacemaker in patients with arrhythmias and heart blocks // Modelling, Measurument & Control, C, 1995. Vol. 48, № 2. PP. 39-46.
347. Rossiev D.A., Golovenkin S.E., Shulman V.A., Matyushin G.V. The employment of neural networks to model implantation of pacemaker in patients with arrhythmias and heart blocks // Proceedings of International Conference on Neural Information Processing, Oct. 17-20, 1994, Seoul, Korea.V.1.- PP.537-542.
348. Rossiev D.A., Savchenko A.A., Borisov A.G., Kochenov D.A. The employment of neural-network classifier for diagnostics of different phases of immunodeficiency // Modelling, Measurement & Control.- 1994.- V.42.- N.2. P.55-63.
349. Rozenbojm J., Palladino E., Azevedo A.C. An expert clinical diagnosis system for the support of the primary consultation // Salud. Publica Mex.- 1993.- V.35, N.3.- P.321-325.
350. Rumelhart D.E., Hinton G.E., Williams R.J. Learning internal representations by error propagation.
– Parallel Distributed Processing: Exploration in the Microstructure of Cognition, D.E.Rumelhart and J.L.McClelland (Eds.), vol. 1, Cambridge, MA: MIT Press, 1986. PP. 318–362.
351. Rummelhart D.E., Hinton G.E., Williams R.J. Learning representations by back-propagating errors // Nature, 1986. V. 323. P. 533-536.
352. Saaf L. A., Morris G. M. Filter synthesis using neural networks: [Pap.] Opt. Pattern Recogn. II: Proc. Meet., Paris, 26-27 Apr., 1989 // Proc. Soc. Photo-Opt. Instrum. Eng.- 1989.- 1134.- PP. 12-16.
353. Sandberg I.W. Approximation for Nonlinear Functionals.
– IEEE Transactions on Circuits and Systems - 1: Fundamental Theory and Applications, Jan. 1992. Vol.39, No 1. PP.65 67.