Учебное пособие по курсу «Нейроинформатика»
Шрифт:
265. Dorrer M.G., Gorban A.N., Zenkin V.I. Neural networks in psychology: classical explicit diagnoses // Neuroinformatics and Neurocomputers, Proceedings of the second RNNS-IEEE Simposium, Rostov-na-Donu, September 1995. PP. 281-284.
266. Draper N. R. Applied regression analysis bibliographi update 1988-89 // Commun. Statist. Theory and Meth.- 1990.1990.- 19, № 4.- PP. 1205-1229.
267. Ercal F., Chawla A., Stoeker W.V. et al. Neural network diagnosis of malignant melanoma from color images // IEEE Trans. Biomed. Eng.- 1994.- V.41, N.9.- P.837-845.
268. Ferretti C., Mauri G. NNET: some tools for neural Networks simulation // 9th Annu. Int. Phoenix Conf. Comput. and Commun., Scottsdate, Ariz., March 21-23, 1990.- Los Alamitos (Calif.) etc., 1990.- PP. 38-43.
269. Filho E.C.D.B.C., Fairhurst M.C., Bisset D.L. Adaptive pattern recognition using goal seeking neurons // Pattern Recogn. Lett.- 1991.- 12, № 3.- PP. 131-138.
270. Floyd C.E.Jr., Lo J.Y., Yun A.J. et al. Prediction of breast cancer malignancy using an artificial neural network // Cancer.- 1994.- V.74, N.11.- P.2944-2948.
271. Forbes A.B., Mansfield A.J. Neural implementation of a method for solving systems of linear algebraic equations // Nat. Phys. Lab. Div. Inf. Technol. and Comput. Rept.- 1989.№ 155.- PP. 1-14.
272. Fu H.C., Shann J.J. A fuzzy neural network for knowledge learning // Int. J. Neural Syst.- 1994.- V.5, N.1.- P.13-22.
273. Fukushima K. Neocognitron: A self-organizing Neural Network model for a Mechanism of Pattern Recognition uneffected by shift in position // Biological Cybernetics.1980. V. 36, № 4. PP. 193-202.
274. Fulcher J. Neural networks: promise for the future? // Future Generat. Comput. Syst.- 1990-1991.- 6, № 4.- PP. 351-354.
275. Gallant A.R., White H. There exist a neural network that does not make avoidable mistakes.
– IEEE Second International Coferense on Neural Networks, San Diego, CA, New York: IEEE Press, vol. 1, 1988. PP. 657–664.
276. Gecseg F. Products of Automata. Springer, 1986. 107 p.
277. Gemignani M. C. Liability for malfunction of an expert system // IEEE Conf. Manag. Expert Syst. Program and Proj., Bethesda, Md. Sept. 10-12, 1990: Proc.- Los Alamitos (Calif.) etc., 1990.- PP. 8-15.
278. Genis C. T. Relaxation and neural learning: points of convergence and divergence // J. Parallel and Distrib. Comput.- 1989.- 6, № 2.- PP. 217-244.
279. George N., Wang hen-ge, Venable D.L. Pattern recognition using the ring-wedge detector and neural-network software: [Pap.] Opt. Pattern Recogn. II: Proc. Meet., Paris, 26-27 Apr., 1989 // Proc. Soc. Photo-Opt. Instrum. Eng.- 1989.- PP. 96-106.
280. Gilev S.E. A non-back-propagation method for obtaining the gradients of estimate function // Advances in Modelling & Analysis, A, AMSE Press, 1995. Vol. 29, № 1. PP. 51-57.
281. Gilev S.E., Gorban A.N. On Completeness of the Class of Functions Computable by Neural Networks, Proc. of the World Congress on Neural Networks, Sept. 15-18, 1996, San Diego, CA, Lawrence Erlbaum Associates, 1996, pp. 984-991.
282. Gilev S.E., Gorban A.N., Kochenov D.A., Mirkes Ye.M., Golovenkin S.E., Dogadin S.A., Nozdrachev K.G., Maslennikova E.V., Matyushin G.V., Rossiev D.A., Shulman V.A., Savchenko A.A. "MultiNeuron" neural simulator and its medical applications // Proceedings of International Conference on Neural Information Processing, Oct. 17-20, 1994, Seoul, Korea.- V.2.- P.1261-1264.
283. Gilev S.E., Gorban A.N., Mirkes E.M. Internal Conflicts in Neural Networks // Transactions of IEEE-RNNS Simposium (Rostov-on-Don, September 1992). V.1. PP. 219-226.
284. Gilev S.E., Gorban A.N., Mirkes E.M. Several Methods for Accelerating the Traning Process of Neural Networks in Pattern Recognition.
– Advances in Modelling & Analysis, A, AMSE Press, V. 12, No. 4, 1992, pp. 29-53.
285. Gilev S.E., Gorban A.N., Mirkes E.M. Small Experts and Internal Conflicts in Leanable Neural Networks // Advances in Modelling & Analysis.- AMSE Press.- 1992.- V.24, No. 1.P.45-50.
286. Gileva L.V., Gilev S.E. Neural Networks for binary classification// AMSE Transaction, Scientific Siberian, A, 1993, Vol. 6. Neurocomputing, pp. 135-167.
287. Gindi G.R., Darken C.J., O’Brien K.M. et al. Neural network and conventional classifiers for fluorescence-guided laser angioplasty // IEEE Trans. Biomed. Eng.- 1991.- V.38, N.3.- P.246-252.
288. Gluck M.A., Parker D.B., Reifsnider E.S. Some Biological Implications of a Differential-Hebbian Learning Rule.
– Psychobiology, 1988. Vol. 16. No. 3. PP. 298-302.
289. Golub D.N. and Gorban A.N. Multi-Particle Networks for Associative Memory, Proc. of the World Congress on Neural Networks, Sept. 15-18, 1996, San Diego, CA, Lawrence Erlbaum Associates, 1996, pp. 772-775.
290. Gorban A.N., Novokhodko A.Yu.. Neural Networks In Transposed Regression Problem, Proc. of the World Congress on Neural Networks, Sept.15-18, 1996, San Diego, CA, Lawrence Erlbaum Associates, 1996, pp. 515-522.
291. Gorban A.N. Neurocomputing in Siberia // Advances in Modelling & Analysis.- AMSE Press.- 1992.- V.34(2).P.21-28.
292. Gorban A.N. Systems with inheritance and effects of selection.- Scientific Siberian A, Volume 1. Ecology, AMSE Press, ISBN: 2-909214-04-4, 1992, pp. 82-126
293. Gorban A.N., Mirkes Ye.M. and Wunsch D.C. II High order ortogonal tensor networks: Information capacity and reliability // ICNN97 (The 1997 IEEE International Conference on Neural Networks), Houston, IEEE, 1997. PP. 1311-1314.
294. Gorban A.N., Mirkes Ye.M. Functional Components of Neurocomputer.
– Москва, 1996. с.352-359.