Учебное пособие по курсу «Нейроинформатика»
Шрифт:
8. Составляется отчет, в который должны входить исходный задачник, таблицы фиксации значимостей, окончательный задачник. В случае, если оставшиеся вопросы по первоначальной классификации являлись не самыми значимыми, желательно включить в отчет анализ причин, по которым они оказались наиболее значимыми. Кроме того, окончательный вариант сети демонстрируется преподавателю.
Лабораторная № 2
Цель работы. Освоение работы
Задание. Необходимо написать программу, имитирующую работу сети Кохонена. Проанализировать задачник, сформированный при выполнении первой лабораторной с помощью написанного имитатора. Сравнить скорость обучения сети при использовании классического алгоритма обучения сетей Кохонена и метода динамических ядер. Построить классификацию на два, три четыре и пять классов. Для каждого класса в каждой классификации определить следующие показатели:
1. Расстояние между классами.
2. Максимальное расстояние от точек класса до ядра класа.
3. Число точек в классе.
4. Число точек каждого из «правильных» классов (например число «мужчин» и «женщин») в каждом классе.
Все результаты отражаются в отчете.
Лабораторная № 3
Цель работы. Сравнить два вида сетей ассоциативной памяти.
Используемые программы. Лабораторная выполняется на программе Hopfield.
Задание.
1. Подобрать пять образов, которые способна запомнить классическая сеть Хопфилда.
2. Определить максимальный уровень шума, при котором сеть продолжает правильно воспроизводить все образы.
3. Определить минимальный радиус контрастирования, при котором сеть может правильно воспроизвести все образы.
4. Определить максимальный уровень шума, при котором отконтрастированная сеть продолжает правильно воспроизводить все образы.
5. Переключить программу в режим работы проекционной сети ассоциативной памяти. И повторить этапы со второго по четвертый.
В отчет включаются все результаты. Кроме того, на основе полученных данных необходимо сформулировать рекомендации по тому, какие виды сетей (из четырех исследованных) предпочтительнее использовать.
Рекомендуется сохранить обучающее множество для использования в следующих лабораторных работах.
Лабораторная № 4
Цель работы. Исследование стратегий обучения нейронных сетей
Используемые программы. Лабораторная выполняется на программе Sigmoid.
Задание. В лабораторной работе требуется обучить нейронную сеть решению задачи распознавания пяти бинарных изображений с использованием четырех различных методов обучения и провести сравнение методов по скорости обучения и надежности работы обученной сети. Основные этапы выполнения работы:
1. Формирование задачника.
2. Установка параметров метода обучения.
3. Обучение нейронной сети.
4. Тестирование обученной нейронной сети (статистический тест).
5. Повторение этапов 2–4 для других методов обучения.
6. Анализ полученных результатов.
Методы обучения:
1. Градиентный с mParTan
2. Градиентный без mParTan
3. Случайный без mParTan
4. Случайный с mParTan
В отчет включаются все полученные результаты (число тактов при обучении сети и результаты статистического теста для всех четырех вариантов стратегии обучения). На основе анализа полученных результатов необходимо сформулировать рекомендации по использованию исследованных стратегий обучения.
Лабораторная № 5
Цель работы. Исследование влияния различных видов функции оценки на обучение нейронных сетей
Используемые программы. Лабораторная выполняется на программе Sigmoid.
Задание. В лабораторной работе требуется обучить нейронную сеть решению задачи распознавания пяти бинарных изображений с использованием различных функций оценки и провести сравнение по скорости обучения и надежности работы обученной сети. Основные этапы выполнения работы те же, что и для лабораторной работы 4.
1. Формирование задачника.
2. Установка параметров оценки.
3. Обучение нейронной сети.
4. Тестирование обученной нейронной сети (статистический тест).
5. Повторение этапов 2–4 для других методов оценки.
6. Анализ полученных результатов.
Исследуемые оценки:
1. Метод наименьших квадратов.
2. Расстояние до множества с уровнем надежности 0,1.
3. Расстояние до множества с уровнем надежности 1,8.
В отчет включаются все полученные результаты (число тактов при обучении сети и результаты статистического теста для всех видов оценки). На основе анализа полученных результатов необходимо сформулировать рекомендации по использованию исследованных оценок.
Лабораторная № 6
Цель работы. Контрастирование нейронных сетей
Используемые программы. Лабораторная выполняется на программе Sigmoid.
Задание. В лабораторной работе требуется провести контрастирование обученной нейронной сети с целью минимизации числа синаптических связей и сравненить надежности функционирования контрастированной и неконтрастированной нейронных сетей. Основные этапы выполнения работы: