Учебное пособие по курсу «Нейроинформатика»
Шрифт:
Эта модель позволяет построить простые иллюстрации свойств обучения сетей Кохонена, общие для всех методов. Наиболее иллюстративным является пример, когда в двумерном пространстве множество объектов равномерно распределено по сфере (окружности), причем объекты пронумерованы против часовой стрелке. В начальный момент времени ядра являются противоположно направленными векторами.
Рис. 2. Положение ядер при последовательном предъявлении объектов со скоростью обучения 0,5. Состояние до обучения и после каждой эпохи обучения. Ниже приведен график изменения суммы квадратов изменений координат ядер.
На рис. 2 приведены состояния
Рис. 3. Положение ядер при последовательном предъявлении объектов со скоростью обучения 0,01. Состояние до обучения и после каждой эпохи обучения. Ниже приведен график изменения суммы квадратов изменений координат ядер.
Из анализа рис. 3 видно, что изменения ядер уменьшаются со временем. Однако в случае изначально неудачного распределения ядер потребуется множество шагов для перемещения их к «своим» кластерам (см. рис. 4).
Рис. 4. Обучение сети Кохонена со скоростью 0,01 (107 эпох)
Следующая модификация алгоритма обучения состоит в постепенном уменьшении скорости обучения. Это позволяет быстро приблизиться к «своим» кластерам на высокой скорости и произвести доводку при низкой скорости. Для этого метода необходимым является требование, чтобы последовательность скоростей обучения образовывала расходящийся ряд, иначе остановка алгоритма будет достигнута не за счет выбора оптимальных ядер, а за счет ограниченности точности вычислений. На рис. 5 приведены состояния сети Кохонена при использовании начальной скорости обучения 0,5 и уменьшения скорости в соответствии с натуральным рядом (1, ½, ⅓, …). Уменьшение скорости обучения производилось после каждой эпохи. Из графика изменения суммы квадратов изменений координат ядер видно, что этот метод является лучшим среди рассмотренных. На рис. 6 приведены результаты применения этого метода в случае неудачного начального положения ядер. Распределение объектов выбрано то же, что и на рисунке 4 — два класса по 8 объектов, равномерно распределенных в интервалах [π/4,3 π/4] и [5π/4, 7π/4].
Рис. 5. Положение ядер при последовательном предъявлении объектов со снижением скорости обучения с 0,5 в соответствии с последовательностью 1/n. Состояние до обучения и после каждой эпохи обучения. Ниже приведен график изменения суммы квадратов изменений координат ядер (в логарифмической шкале).
Рис. 6. Обучение сети Кохонена со снижением скорости с 0,5.
Альтернативой методу с изменением шага считается метод случайного перебора объектов в пределах эпохи. Основная идея этой модернизации метода состоит в том, чтобы избежать направленного воздействия.
Рис. 7. Положение ядер при предъявлении объектов в случайном порядке со скоростью обучения 0,5. Состояние до обучения и после каждой эпохи обучения. Ниже приведен график изменения суммы квадратов изменений координат ядер.
Под направленным воздействием подразумевается порядок предъявления
Возможны различные сочетания рассмотренных выше методов. Например, случайный перебор объектов в сочетании с уменьшением скорости обучения. Именно такая комбинация методов является наиболее мощным методом среди методов пообъектного обучения сетей Кохонена.
Метод динамических ядер
Альтернативой методам пообъектного обучения сетей Кохонена является метод динамических ядер, который напрямую минимизирует суммарную меру близости (1). Метод является итерационной процедурой, каждая итерация которой состоит из двух шагов. Сначала задаются начальные значения ядер. Затем выполняют следующие шаги:
Разбиение на классы при фиксированных значениях ядер:
Ki={x: dist(ai, x)≤dist(aj, x)} (3)
Оптимизация значений ядер при фиксированном разбиении на классы:
В случае равенства в формуле (3) объект относят к классу с меньшим номером. Процедура останавливается если после очередного выполнения разбиения на классы (3) не изменился состав ни одного класса.
Исследуем сходимость метода динамических ядер. На шаге (3) суммарная мера близости (1) может измениться только при переходе объектов из одного класса в другой. Если объект перешел из j-го класса в i-й, то верно неравенство dist(ai, x)≤dist(aj, x). То есть при переходе объекта из одного класса в другой суммарная мера близости не возрастает. На шаге (4) минимизируются отдельные слагаемые суммарной меры близости (1). Поскольку эти слагаемые независимы друг от друга, то суммарная мера близости на шаге (4) не может возрасти. При это если на шаге (4) суммарная мера близости не уменьшилась, то ядра остались неизменными и при выполнении следующего шага (3) будет зафиксировано выполнение условия остановки. И наконец, учитывая, что конечное множество объектов можно разбить на конечное число классов только конечным числом способов, получаем окончательное утверждение о сходимости метода динамических ядер.
Процедура (3), (4) сходится за конечное число шагов, причем ни на одном шаге не происходит возрастания суммарной меры близости.
На первом из рассмотренных выше примеров, с равномерно распределенными по окружности объектами, при любом начальном положении ядер (за исключением совпадающих ядер) метод динамических ядер остановится на втором шаге, поскольку при второй классификации (3) состав классов останется неизменным.
На втором из примеров, рассмотренных выше (см. рис. 4, 6) примеров при том же начальном положении ядер, метод динамических ядер остановится после первого шага, не изменив положения ядер. Однако такое положение ядер не соответствует обычному представлению о «хорошей» классификации. Причина — неудачное начальное положение ядер (созданное специально).