Учебное пособие по курсу «Нейроинформатика»
Шрифт:
Очевидно, что третий критерий применим только в тех случаях, когда ядра классов являются точками того же пространства, что и те точки, которые составляют классы. Все приведенные критерии неоднозначны и могут меняться в зависимости от требований задачи. Так вместо сферической разделимости можно требовать эллиптической разделимости и т. д.
Начальное число классов можно задавать по разному. Например, начать с двух классов и позволить сети «самой» увеличивать число классов. Или начать с большого числа классов и позволить сети отбросить «лишние» классы. В первом случае система может остановиться в случае наличия иерархической
Другим критерием может служить плотность точек в классе. Определим объем класса как объем шара с центром в ядре класса и радиусом равным радиусу класса. Для простоты можно считать объем класса равным объему куба с длинной стороны равной радиусу класса (объем шара будет отличаться от объема куба на постоянный множитель, зависящий только от размерности пространства). Плотностью класса будем считать отношение числа точек в классе к объему класса. Отметим, что этот критерий применим для любых мер близости, а не только для тех случаев, когда ядра и точки принадлежат одному пространству.
Метод применения этого критерия прост. Разбиваем первый класс на два и запускаем процедуру настройки сети (метод динамических ядер или обучение сети Кохонена). Если плотности обоих классов, полученных разбиением одного класса, не меньше плотности исходного класса, то считаем разбиение правильным. В противном случае восстанавливаем классы, предшествовавшие разбиению, и переходим к следующему классу. Если после очередного просмотра всех классов не удалось получить ни одного правильного разбиения, то считаем полученное число классов соответствующим «реальному». Эту процедуру следует запускать с малого числа классов, например, с двух.
Проведем процедуру определения числа классов для множества точек, приведенного на рис. 10а. Результаты приведены на рис. 18. Порядок классов 1-й класс — черный цвет, 2-й класс — синий, 3-й — зеленый, 4-й — красный, 5-й — фиолетовый, 6-й — желтый.
Рассмотрим последовательность действий, отображенную на рис. 18.
Первый рисунок — результат классификации на два класса.
Второй рисунок — первый класс разбит на два. Результат классификации на три класса. Плотности увеличились. Разбиение признано хорошим.
Рис. 18. Результат применения критерия плотности классов для определения числа классов к множеству точек, приведенному на рис. 10а.
Третий рисунок — первый класс разбит на два. Результат классификации на четыре класса. Плотности увеличились. Разбиение признано хорошим.
Четвертый рисунок — первый класс разбит на два. Результат классификации на пять классов. Плотности не увеличились. Разбиение отвергнуто. Возврат к третьему рисунку.
Пятый рисунок — второй класс разбит на два. Результат классификации на пять классов. Плотности не увеличились. Разбиение отвергнуто. Возврат к третьему рисунку.
Шестой рисунок — третий класс разбит на два. Результат классификации на пять классов. Плотности увеличились. Разбиение признано хорошим.
Седьмой рисунок — первый класс разбит на два. Результат классификации на шесть
Восьмой рисунок — второй класс разбит на два. Результат классификации на шесть классов. Плотности не увеличились. Разбиение отвергнуто. Возврат к шестому рисунку.
Девятый рисунок — третий класс разбит на два. Результат классификации на шесть классов. Плотности не увеличились. Разбиение отвергнуто. Возврат к шестому рисунку.
Десятый рисунок — четвертый класс разбит на два. Результат классификации на шесть классов. Плотности не увеличились. Разбиение отвергнуто. Возврат к шестому рисунку.
Одинадцатый рисунок — пятый класс разбит на два. Результат классификации на шесть классов. Плотности не увеличились. Разбиение отвергнуто. Возврат к шестому рисунку.
Двенадцатый рисунок (совпадает с шестым) — окончательный результат.
Рис. 19. Результат применения критерия плотности классов для определения числа классов к множеству точек, приведенному на рис. 10б.
На рис. 19 приведен результат применения плотностного критерия определения числа классов для множества точек, приведенного на рис. 10б.
Лекции 4, 5 и 6. Нейронные сети ассоциативной памяти, функционирующие в дискретном времени
Нейронные сети ассоциативной памяти — сети восстанавливающие по искаженному и/или зашумленному образу ближайший к нему эталонный. Исследована информационная емкость сетей и предложено несколько путей ее повышения, в том числе — ортогональные тензорные (многочастичные) сети. Описаны способы предобработки, позволяющие конструировать нейронные сети ассоциативной памяти для обработки образов, инвариантной относительно групп преобразований. Описан численный эксперимент по использованию нейронных сетей для декодирования различных кодов. Доказана теорема об информационной емкости тензорных сетей.
Описание задачи
Прежде чем заниматься конструированием сетей ассоциативной памяти необходимо ответить на следующие два вопроса: «Как устроена ассоциативная память?» и «Какие задачи она решает?». Когда мы задаем эти вопросы, имеется в виду не устройство отделов мозга, отвечающих за ассоциативную память, а наше представление о макропроцессах, происходящих при проявлении ассоциативной памяти.
Принято говорить, что у человека возникла ассоциация, если при получении некоторой неполной информации он может подробно описать объект, к которому по его мнению относится эта информация. Достаточно хорошим примером может служить описание малознакомого человека. К примеру, при высказывании: «Слушай, а что за парень, с которым ты вчера разговаривал на вечеринке, такой высокий блондин?»— у собеседника возникает образ вчерашнего собеседника, не ограничивающийся ростом и цветом волос. В ответ на заданный вопрос он может рассказать об этом человеке довольно много. При этом следует заметить, что содержащейся в вопросе информации явно недостаточно для точной идентификации собеседника. Более того, если вчерашний собеседник был случайным, то без дополнительной информации его и не вспомнят.