Учебное пособие по курсу «Нейроинформатика»
Шрифт:
Анализ данных, приведенных в табл. 2, показывает, что при тензорных степенях 1, 2 и 3 степень коррелированности эталонов не удовлетворяет первому из достаточных условий (
Таким образом, чем выше тензорная степень сети (9), тем слабее становится ограничение на степень коррелированности эталонов. Сеть (10) не чувствительна к степени коррелированности эталонов.
Сети для инвариантной обработки изображений
Для того, чтобы при обработке переводить визуальные образов, отличающиеся только положением в рамке изображения, в один эталон, применяется следующий прием [91]. Преобразуем исходное изображение в некоторый вектор величин, не изменяющихся при сдвиге (вектор инвариантов). Простейший набор инвариантов дают автокорреляторы — скалярные произведения образа на сдвинутый образ, рассматриваемые как функции вектора
В качестве примера рассмотрим вычисление сдвигового автокоррелятора для черно-белых изображений. Пусть дан двумерный образ S размером p×q=n. Обозначим точки образа как sij. Элементами автокоррелятора Ac(S) будут величины
Автокорреляторная сеть имеет вид
Сеть (11) позволяет обрабатывать различные визуальные образы, отличающиеся только положением в рамке, как один образ.
Конструирование сетей под задачу
Подводя итоги, можно сказать, что все сети ассоциативной памяти типа (2) можно получить, комбинируя следующие преобразования:
1. Произвольное преобразование. Например, переход к автокорреляторам, позволяющий объединять в один выходной образ все образы, отличающиеся только положением в рамке.
2. Тензорное преобразование, позволяющее сильно увеличить способность сети запоминать и точно воспроизводить эталоны.
3. Переход к ортогональному проектору, снимающий зависимость надежности работы сети от степени коррелированности образов.
Наиболее сложная сеть будет иметь вид:
где rij– 1 — элементы матрицы, обратной матрице Грама системы векторов {F(xi)}⊗k, F(x) — произвольное преобразование.
Возможно применение и других методов предобработки. Некоторые из них рассмотрены в работах [68, 91, 278]
Численный эксперимент
Работа ортогональных тензорных сетей при наличии помех сравнивалась с возможностями линейных кодов, исправляющих ошибки. Линейным кодом, исправляющим k ошибок, называется линейное подпространство в n-мерном пространстве над GF2, все вектора которого удалены друг от друга не менее чем на 2k+1. Линейный код называется совершенным, если для любого вектора n-мерного пространства существует кодовый вектор, удаленный от данного не более, чем на k. Тензорной сети в качестве эталонов подавались все кодовые векторы избранного для сравнения кода. Численные эксперименты с совершенными кодами показали, что тензорная сеть минимально необходимой валентности правильно декодирует все векторы. Для несовершенных кодов картина оказалась хуже — среди устойчивых образов тензорной сети появились «химеры» — векторы, не принадлежащие множеству эталонов.
Таблица 3. Результаты численного эксперимента. МР — минимальное расстояние между эталонами, ЧЭ — число эталонов
№ | Размерность | Число векторов | МР | ЧЭ | Валентность | Число химер | Число ответов | После обработки сетью расстояние до правильного ответа стало | |||
---|---|---|---|---|---|---|---|---|---|---|---|
верн. | неверн. | меньше | то же | больше | |||||||
1 | 10 | 1024 | 3 | 64 | 3,5 | 896 | 128 | 896 | 0 | 856 | 0 |
2 | 7,21 | 384 | 640 | 384 | 0 | 348 | 0 | ||||
3 | 10 | 1024 | 5 | 8 | 3 | 260 | 464 | 560 | 240 | 260 | 60 |
4 | 5,15 | 230 | 494 | 530 | 240 | 230 | 60 | ||||
5 | 17,21 | 140 | 532 | 492 | 240 | 182 | 70 | ||||
6 | 15 | 32768 | 7 | 32 | 3 | 15456 | 17312 | 15456 | 0 | 15465 | 0 |
7 | 5,21 | 14336 | 18432 | 14336 | 0 | 14336 | 0 |
В
Таблица 4. Результаты численного эксперимента
№ | Число химер, удаленных от ближайшего эталона на: | Число неверно распознанных векторов, удаленных от ближайшего эталона на: | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
1 | 640 | 256 | 0 | 0 | 0 | 896 | 0 | 0 | 0 | 0 |
2 | 384 | 0 | 0 | 0 | 0 | 384 | 0 | 0 | 0 | 0 |
3 | 0 | 210 | 50 | 0 | 0 | 0 | 210 | 290 | 60 | 0 |
4 | 0 | 180 | 50 | 0 | 0 | 0 | 180 | 290 | 60 | 0 |
5 | 0 | 88 | 50 | 2 | 0 | 0 | 156 | 290 | 60 | 0 |
6 | 0 | 0 | 1120 | 13440 | 896 | 0 | 0 | 1120 | 13440 | 896 |
7 | 0 | 0 | 0 | 13440 | 896 | 0 | 0 | 0 | 13440 | 896 |
Подводя итог можно сказать, что качество работы сети возрастает с ростом размерности пространства и валентности и по эффективности устранения ошибок сеть приближается к коду, гарантированно исправляющему ошибки.
Доказательство теоремы
В данном разделе приведено доказательство теоремы о числе линейно независимых образов в пространстве k-х тензорных степеней эталонов.
При построении тензорных сетей используются тензоры валентности k следующего вида: