Чтение онлайн

на главную

Жанры

Учебное пособие по курсу «Нейроинформатика»

Миркес Е. М.

Шрифт:

(13)

где aj — n-мерные вектора над полем действительных чисел.

Если все вектора ai=a, то будем говорить о k-й тензорной степени вектора a, и использовать обозначение a⊗k. Для дальнейшего важны следующие элементарные свойства тензоров вида (13).

1. Пусть

и
,
тогда скалярное произведение этих векторов может быть вычислено по формуле

(14)

Доказательство этого свойства следует непосредственно из свойств тензоров общего вида.

2. Если в условиях свойства 1 вектора являются тензорными степенями, то скалярное произведение имеет вид:

(15)

Доказательство непосредственно вытекает из свойства 1.

3. Если вектора a и b ортогональны, то есть (a,b) = 0, то и их тензорные степени любой положительной валентности ортогональны.

Доказательство вытекает из свойства 2.

4. Если вектора a и b коллинеарны, то есть b = λa, то a⊗k=λka⊗k.

Следствие. Если множество векторов

содержит хотя бы одну пару противоположно направленных векторов, то система векторов
будет линейно зависимой при любой валентности k.

5. Применение к множеству векторов

невырожденного линейного преобразования B в пространстве Rn эквивалентно применению к множеству векторов
линейного невырожденного преобразования, индуцированного преобразованием B, в пространстве
.

Сюръективным мультииндексом α(L) над конечным множеством L назовем k-мерный вектор, обладающий следующими свойствами:

1. для любого iL существует j∈{1, …, k} такое, что αj=i;

2. для любого j∈{1, …, k} существует iL такое, что αj=i.

Обозначим через d(α(L),i) число компонент сюръективного мультииндекса α(L) равных i, через |L| — число элементов множества L, а через Α(L) — множество всех сюръективных мультииндексов над множеством L.

Предложение 1. Если вектор a представлен в виде

, где βi — произвольные действительные коэффициенты, то верно следующее равенство

(16)

Доказательство предложения получается возведением

в тензорную степень k и раскрытием скобок с учетом линейности операции тензорного умножения.

В множестве

, выберем множество X следующим образом: возьмем все (n-1)-мерные вектора с координатами ±1, а в качестве n-й координаты во всех векторах возьмем единицу.

Предложение 2. Множество x является максимальным множеством n-мерных векторов с координатами равными ±1 и не содержит пар противоположно направленных векторов.

Доказательство. Из равенства единице последней координаты всех векторов множества X следует отсутствие пар противоположно направленных векторов. Пусть x — вектор с координатами ±1, не входящий в множество X, следовательно последняя координата вектора x равна минус единице. Так как в множество X включались все (n-1) — мерные вектора с координатами ±1, то среди них найдется вектор, первые n-1 координата которого равны соответствующим координатам вектора x со знаком минус. Поскольку последние координаты также имеют противоположные знаки, то в множестве X нашелся вектор противоположно направленный по отношению к вектору x. Таким образом множество X максимально.

Таким образом в множестве X содержится ровно 2n– 1 вектор. Каждый вектор x∈X можно представить в виде

, где I⊂{1, …, n– 1}. Для нумерации векторов множества X будем использовать мультииндекс I. Обозначим через |I| число элементов в мультииндексе I. Используя введенные обозначения можно разбить множество X на n непересекающихся подмножеств: Pi = {xI, |I|=i},
.

Теорема. При k<n в множестве {x⊗k} линейно независимыми являются

векторов.

Для доказательства этой теоремы потребуется следующая интуитивно очевидная, но не встреченная в литературе лемма.

Лемма. Пусть дана последовательность векторов

a1,a2=a¹2+a²2,a3=a¹3+a²3,…,am=a¹m+a²m

таких, что (ai,a²j)=0 при всех i<j и (a¹i,a²i)=0, a²i≠0 при всех i, тогда все вектора множества {ai} линейно независимы.

Доказательство. Известно, что процедура ортогонализации Грама приводит к построению ортонормированного множества векторов, а все вектора линейно зависящие от предыдущих векторов последовательности обращаются в нулевые. Проведем процедуру ортогонализации для заданной последовательности векторов.

Поделиться:
Популярные книги

Титан империи 2

Артемов Александр Александрович
2. Титан Империи
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Титан империи 2

Вперед в прошлое!

Ратманов Денис
1. Вперед в прошлое
Фантастика:
попаданцы
5.00
рейтинг книги
Вперед в прошлое!

Ты нас предал

Безрукова Елена
1. Измены. Кантемировы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты нас предал

Огни Аль-Тура. Желанная

Макушева Магда
3. Эйнар
Любовные романы:
любовно-фантастические романы
эро литература
5.25
рейтинг книги
Огни Аль-Тура. Желанная

Личник

Валериев Игорь
3. Ермак
Фантастика:
альтернативная история
6.33
рейтинг книги
Личник

Приручитель женщин-монстров. Том 14

Дорничев Дмитрий
14. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
фэнтези
5.00
рейтинг книги
Приручитель женщин-монстров. Том 14

Идеальный мир для Лекаря 26

Сапфир Олег
26. Лекарь
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Идеальный мир для Лекаря 26

Вечный. Книга I

Рокотов Алексей
1. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга I

Последний попаданец

Зубов Константин
1. Последний попаданец
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Последний попаданец

Найди меня Шерхан

Тоцка Тала
3. Ямпольские-Демидовы
Любовные романы:
современные любовные романы
короткие любовные романы
7.70
рейтинг книги
Найди меня Шерхан

Гром над Академией. Часть 2

Машуков Тимур
3. Гром над миром
Фантастика:
боевая фантастика
5.50
рейтинг книги
Гром над Академией. Часть 2

Имперец. Том 5

Романов Михаил Яковлевич
4. Имперец
Фантастика:
попаданцы
альтернативная история
аниме
6.00
рейтинг книги
Имперец. Том 5

Бастард

Осадчук Алексей Витальевич
1. Последняя жизнь
Фантастика:
фэнтези
героическая фантастика
попаданцы
5.86
рейтинг книги
Бастард

Метатель

Тарасов Ник
1. Метатель
Фантастика:
боевая фантастика
попаданцы
рпг
фэнтези
фантастика: прочее
постапокалипсис
5.00
рейтинг книги
Метатель