Удивительная химия
Шрифт:
а = a0/ 2n,
где ао — начальная радиоактивность.
Здесь надо пояснить, что радиоактивность а — это число атомов, распадающихся в образце в единицу времени; радиоактивность пропорциональна имеющемуся числу атомов, поэтому она изменяется со временем так же, как и N.
На практике радиоактивность образца обычно характеризуют не общим числом происходящих в нем распадов, а пропорциональным ему числом импульсов I, которые регистрирует прибор, измеряющий радиоактивность (I= ка, где к — коэффициент пропорциональности). Очевидно, что и в этом случае формула имеет вид
I=I0/2n
По
Следует отметить, что приведенные формулы верны не только для целых, но и для дробных значений п. Правда, при нецелых п для расчетов потребуется знание логарифмов и использование калькулятора, производящего действия со степенями и логарифмами. Если же n — целое (т. е. прошло целое число периодов полураспада), то расчеты значительно упрощаются и часто их можно проделать даже в уме.
В качестве примера решим такую задачу. В лабораторию для биохимических исследований доставили препарат, меченный фосфором-32 (для этого радионуклида Т1/2 = 2 недели). Начальная активность образца составляла 512 импульсов в минуту в расчете на 1 мкг препарата. Можно ли будет использовать этот препарат для исследований через 12 недель, если для надежного измерения активность препарата должна быть не ниже 10 импульсов в минуту на 1 мкг?
Для решения этой задачи рассчитаем активность препарата к указанному сроку. По условию Iо = 512 имп./(мин х мкг), Т1/2 = 2 недели, t = 12 недель, п = 12/2 = 6. Подставляем эти значения в формулу и получаем, что через 12 недель (примерно 3 месяца) активность снизится до I= 512 / 26 = 512 / 64 = 8 имп.(мин х мкг). Следовательно, сотрудникам лаборатории отпущен сравнительно небольшой срок для решения стоящих перед ними научных задач — через 3 месяца придется заказывать новую партию дорогостоящего препарата. Отметим, что активность препарата, конечно, зависит от его общего количества, поэтому она отнесена к 1 микрограмму вещества; эта активность могла быть задана и в любых других единицах. Разумеется, числовые данные в этой задаче специально подобраны так, чтобы предельно облегчить расчеты. Например, если бы t было равно не 12, а, допустим, 12,8 неделям, пришлось бы возводить 2 в степень 12,8 / 2 = 6,4, что невозможно без калькулятора.
А вот более важный пример. Во время чернобыльской аварии из горящего реактора было выброшено большое количество очень опасного для человека радионуклида иод-131 (Т1/2 = 8 суток). Опасен ли сейчас этот радионуклид? Поскольку с момента аварии прошло более 20 лет (т. е. более 900 периодов полураспада), количество иода-131 уменьшилось более чем в 2900 (или в 10400) раз. Это означает, что если бы в момент аварии (апрель 1986 года) вся Вселенная состояла только из иода-131, то уже через несколько лет от него не осталось бы ни единого атома!
Подобные расчеты для ученых не представляют большою труда. А вот точное и надежное измерение очень малых активностей является серьезной проблемой, которая занимает ученых уже целое столетие — с момента открытия самого явления радиоактивности. Повысив точность измерений слабых радиоактивных излучений, они добились значительных успехов в определении возраста многих археологических находок. Один из самых ярких примеров — радиоуглеродный метод анализа, о котором речь пойдет ниже.
Вы. возможно, слышали или читали, что наша планета подвергается непрерывному облучению космическими частицами. Если бы не атмосфера, пропускающая к земной поверхности лишь небольшую часть космического излучения, жизнь на Земле была бы невозможна, а ее поверхность мало отличалась бы от поверхности
Большинству из вновь образованных атомов 14С предстоит долгая жизнь — на многие тысячи лет. Какая их ждет судьба?
Прежде всего они довольно быстро окислятся кислородом и превратятся в молекулы углекислого газа. Этот радиоактивный углекислый газ равномерно перемешается с огромным количеством обычного углекислого газа. Известно, что углекислый газ атмосферы — основной источник углерода, который усваивается растениями в процессах фотосинтеза. Растениями питаются животные, поэтому вся живая органическая материя содержит радиоуглерод, хотя и в ничтожных количествах. Очень важно, что в результате обменных процессов, протекающих в природе, содержание 14С в растениях и животных на протяжении их жизни остается постоянным. Но как только обмен с окружающей средой прекращается, содержание радиоуглерода начинает медленно снижаться — в 2 раза каждые 5730 лет, как это показано на рис. 7.3.
«Радиоуглерод» входит также в состав неорганических соединений, которые растворены в воде морей и океанов, в подземных водах и могут обмениваться углеродом с углекислым газом атмосферы. В основном это растворимые гидрокарбонаты, которыми так богаты минеральные воды.
Как только в животном или растении обмен с углекислым газом атмосферы прекращается, количество радиоуглерода в нем со временем начинает убывать в соответствии со строгой математической зависимостью.
Подробное рассмотрение закономерностей образования и распада радиоуглерода позволило американскому физикохимику Уилларду Франку Либби (1908–1980) совершить в конце 40-х годов выдающееся открытие, за которое через несколько лет он получил Нобелевскую премию по химии «За введение метода использования углерода-14 для определения возраста в археологии, геологии, геофизике и других областях науки».
В 1955 году в Женеве состоялась Международная конференция по мирному использованию атомной энергии. Выступил на ней с докладом и Либби. Его выступление началось необычно. Он вышел на трибуну с большим чемоданом, вынул из него старую обувь и объявил, что ее носил вождь инков 800 лет назад. Затем извлек из чемодана обломок весла и сказал, что это весло изготовлено в Древнем Египте 3000 лет назад. Каким образом удалось это определить? Теоретические основы радиоуглеродного метода датировки довольно просты. Однако для их практического использования пришлось провести очень большую работу, которую нельзя считать законченной и к настоящему времени, как это будет видно из приведенных примеров.