Чтение онлайн

на главную

Жанры

Шрифт:

Прежде всего надо было установить, действительно ли содержание |4С в обычном углероде одинаково для всех живых организмов. С этой целью были исследованы образцы древесины из свежесрубленных деревьев в разных местах земного шара. Оказалось, что содержание 14С в них одинаково: в каждом грамме углерода, выделенного из наружного слоя древесины этих деревьев, в течение одной минуты распадается приблизительно 16 атомов 14С, и этот распад сопровождается слабым радиоактивным излучением. Его интенсивность так мала, что образующиеся при распаде частицы задерживаются алюминиевой фольгой толщиной всего 0,1 мм. Поэтому для измерения слабой радиоактивности газ, содержащий 14С (например, в виде углекислого газа или метана), запускают непосредственно внутрь измерительного прибора — счетчика Гейгера

или используют чувствительные сцинтилляционные счетчики, в которых число распадов фиксируется по числу световых вспышек (сцинтилляций) в специальном веществе.

Измерение радиоактивности — очень чувствительный метод определения количества вещества. Например, если искусственно (в ядерном реакторе) получить углекислый газ (СО2), в котором все атомы углерода — это атомы 14С, то даже после разбавления в несколько триллионов (!) раз азотом в газе можно будет обнаружить радиоактивность. Возраст образца устанавливают так. Берут определенную его часть, сжигают и измеряют радиоактивность образовавшегося углекислого газа. Если в этом газе в расчете на 1 г углерода происходит в минуту 8 распадов (каждый из них регистрируется счетчиком), то такому образцу 5730 лет, если 4 распада — 11 460 лет и т. д. По формуле можно рассчитать возраст образца при любой его активности; и не важно, будет ли число распадов в минуту целое или дробное, важно другое — определить эту активность как можно более точно. Вот здесь-то и кроется одна из главных трудностей радиоуглеродного метода датировки. Поскольку активность образцов очень мала и значительно меньше фонового излучения, необходима специальная зашита от внешней радиации и очень долгое измерение (иногда в течение многих суток). Еще сравнительно недавно для надежного анализа образца, возраст которого ориентировочно исчислялся несколькими тысячелетиями, требовалось не менее 20 г углерода. Если это был и угли из костра древнего человека или старые деревянные предметы, то здесь проблем обычно не возникало — углерода для исследований было в избытке. Например, в Северной Америке при раскопках нашли останки поваленных деревьев, все верхушки которых были направлены в одну сторону. Это явление казалось необъяснимым: кому и зачем понадобилось валить столько деревьев, да еще все в одну сторону. Радиоуглеродный метод анализа древесины этих деревьев показал, что они росли примерно 11 тысяч лет назад — как раз в то время, когда на Земле был последний ледниковый период. Стало ясно, что деревья повалил медленно двигавшийся ледник. Кстати, уточнение времени последнего ледникового периода на Земле считается главным результатом исследований по методу Либби.

Но если образец — уникальное изделие, например, старая картина, то, конечно, никому бы не пришло в голову сжечь значительную ее часть, чтобы установить возраст, хотя теоретически это возможно (картины писали на холсте, а холст сделан из растительных волокон).

Трудности возникали и в тех случаях, когда возраст образца превышал несколько десятков тысяч лет; в них так мало осталось атомов 14С, что их трудно с достаточной точностью определить даже с помощью лучших счетчиков. Проблемы возникают и со слишком «молодыми» образцами, содержание радиоуглерода в которых мало отличается от состава современных образцов.

Разработка в 1970-е годы нового метода определения радиоуглерода с использованием ускорителя ионов позволила увеличить чувствительность измерений более чем в 1000 раз. Метод основан на превращении атомов углерода-14 в пучок ионов, который с помощью электрических и магнитных полей отделяется от всех других атомов, что и позволяет с высокой точностью измерять число атомов 14С. Теперь вместо десятков граммов для анализа достаточно всего нескольких миллиграммов, а иногда и долей миллиграмма образца.

При разработке радиоуглеродного метода ученым пришлось столкнуться и с другими трудностями, часто довольно неожиданными. Так, для проверки и корректировки метода был проведен анализ годовых колец некоторых деревьев, возраст которых исчисляется тысячами лет (секвойя, остистая сосна и др.). Между годовыми кольцами обмен углеродом практически отсутствует, поэтому можно было ожидать закономерного снижения содержания 14С при движении от края ствола к его центру в точном соответствии с формулой радиоактивного распада. Однако выяснилось, что количество радиоуглерода в атмосфере не всегда было точно таким, как сейчас, — так что пришлось вводить специальные поправки. Массовые испытания ядерного оружия в 50— 60-е годы также изменили содержание 14С в воздухе.

Очень серьезную проблему представляет загрязнение анализируемого образца. При этом случайное попадание «старого» углерода (например, в виде мела) в «современный» не так опасно — ошибка в этом случае будет невелика. Но если в старый образец, в котором содержание радиоуглерода за время его существования уменьшилось, скажем, в 100 раз, попадет хотя бы 1 % примеси «современного» углерода, то общее количество 14С в образце удвоится, что приведет к очень большой ошибке в определении возраста. (Она будет равна Т1/2, т. е. примерно 6 тысячам лет!) С подобными «загрязнениями» исследуемых объектов приходится иметь дело довольно часто. Например, когда в штате Орегон (США) при прокладке горной дороги нашли в пещере 300 пар древней обуви, археологи решили для лучшей сохранности покрыть их слоем шеллачного лака. К счастью, лака хватило только для 294 пар. Поэтому лишь оставшиеся шесть пар оказались пригодными для определения их возраста радиоуглеродным методом, так как в лаке есть «свежий» нуклид 14С, который смазал бы всю картину.

С еще одной загадкой ученые столкнулись, когда с помощью радиоуглеродного метода они попытались определить возраст травы, которая росла возле шоссе с оживленным движением. Получалось так, что траве… много тысяч лет! Разгадка оказалась довольно простой, но поучительной: придорожная трава усваивала углекислый газ, источником которого в значительной степени были выхлопные газы автомобилей. Эти газы выделялись при сгорании бензина, бензин же получают из нефти. А так как нефть образовалась миллионы лет назад, в ней нуклид 14С не сохранился. Вот почему содержание 14С в придорожной траве оказалось сильно заниженным.

Радиоуглеродный метод проверялся на образцах, возраст которых был достоверно известен — по историко-археологическим данным. Это были, например, кусочки дерева из гробниц фараонов (от 3900 до 5600 лет назад) или из развалин Помпеи (2000 лет назад). Результаты измерений подтвердили точность радиоуглеродного метода.

Тайна Туринской плащаницы

В качестве последнего примера использования радиоуглеродного метода рассмотрим более подробно историю определения возраста знаменитой Туринской плащаницы — покрывала, в которое, согласно Евангелию, было завернуто после казни тело Христа и на котором якобы остался отпечаток его лица и тела.

В 1978 году в итальянском городе Турине была выставлена для всеобщего обозрения плащаница — льняное полотнище длиной 4,3 и шириной 1,1 м с пятнами, похожими на фигуру человека. Эта плащаница появилась во Франции в середине XIV века, много раз перевозилась из одной церкви в другую, в XVI веке побывала даже в пожаре, но была спасена, а последние 400 лет хранилась в Турине. С тех пор не угасали споры о ее подлинности. Еще в 1390 году папа Климент VII объявил плащаницу подделкой, тогда как папа Павел VI назвал ее в 1978 году самой важной реликвией в истории христианства.

Первую фотографию плащаницы разрешили сделать в 1898 году, и вот уже более ста лет не умолкают споры ученых. Однако совершенствующиеся год от года средства научного анализа (изучение структуры и состава волокон, способа их плетения, наличие на них пыльцы определенных растений, анализ пятен краски и крови и т. д. и т. п.) не только не прояснили вопрос, но еще больше его запутали. Аргументов «за» подлинность плащаницы было не меньше, чем аргументов «против». Главным вопросом, конечно, было время изготовления полотна. Долгое время архиепископ Турина не давал разрешения на радиоуглеродный анализ, и его можно понять, поскольку ученые требовали довольно большого куска. Но когда чувствительность радиоуглеродного метода значительно повысилась, а требования ученых соответственно снизились, было разрешено отрезать от края плащаницы, где не было следов изображения, небольшой кусочек. И вот утром 21 апреля 1988 года в присутствии архиепископа Турина кардинала Баллестреро и большой группы ученых от плащаницы отрезали полоску шириной 1 см и длиной 7 см, которую разделили натри части массой по 50 мг, завернули каждую часть в алюминиевую фольгу и упаковали в пронумерованные капсулы из нержавеющей стали. Эти капсулы вместе с тремя контрольными образцами передали представителям трех ведущих лабораторий из Аризоны (США), Оксфорда (Англия) и Цюриха (Швейцария). Представители лабораторий не знали, что находится в каждой капсуле — это держалось в секрете; в контрольных образцах была ткань из нубийского захоронения XI–XII веков, ткань, снятая с мумии Клеопатры (начало II века), и нити со старинной ризы, изготовленной во время правления французского короля Филиппа IV (1290–1310).

Поделиться:
Популярные книги

Царь поневоле. Том 1

Распопов Дмитрий Викторович
4. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Царь поневоле. Том 1

Измена. Не прощу

Леманн Анастасия
1. Измены
Любовные романы:
современные любовные романы
4.00
рейтинг книги
Измена. Не прощу

Мастер Разума IV

Кронос Александр
4. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума IV

Король Масок. Том 1

Романовский Борис Владимирович
1. Апофеоз Короля
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Король Масок. Том 1

Мерзавец

Шагаева Наталья
3. Братья Майоровы
Любовные романы:
современные любовные романы
эро литература
короткие любовные романы
5.00
рейтинг книги
Мерзавец

Я — Легион

Злобин Михаил
3. О чем молчат могилы
Фантастика:
боевая фантастика
7.88
рейтинг книги
Я — Легион

Не грози Дубровскому! Том II

Панарин Антон
2. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том II

Девятый

Каменистый Артем
1. Девятый
Фантастика:
боевая фантастика
попаданцы
9.15
рейтинг книги
Девятый

Матабар. II

Клеванский Кирилл Сергеевич
2. Матабар
Фантастика:
фэнтези
5.00
рейтинг книги
Матабар. II

Ты нас предал

Безрукова Елена
1. Измены. Кантемировы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты нас предал

Девочка по имени Зачем

Юнина Наталья
Любовные романы:
современные любовные романы
5.73
рейтинг книги
Девочка по имени Зачем

Не грози Дубровскому! Том V

Панарин Антон
5. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том V

Проданная Истинная. Месть по-драконьи

Белова Екатерина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Проданная Истинная. Месть по-драконьи

Генерал Империи

Ланцов Михаил Алексеевич
4. Безумный Макс
Фантастика:
альтернативная история
5.62
рейтинг книги
Генерал Империи