Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир
Шрифт:
Представьте себе, что популярный новый фильм показывают в местном кинотеатре. Это романтическая комедия, и сотни пар (намного больше, чем может вместить кинотеатр) выстроились в кассу в очередь за билетами, хотя и отчаялись попасть внутрь. Как только счастливая пара получает билеты, она пробирается в зал и ищет два места рядом. Для простоты предположим, что влюбленные выбирают эти места наугад, там, где есть свободные. Другими словами, они не заботятся о том, будут ли сидеть близко к экрану или далеко от него, на проходе или в середине ряда. Пока они рядом друг с другом, они счастливы.
Допустим, ни одна пара не будет пересаживаться, чтобы освободить место для другой.
Сначала, пока в кинотеатре довольно пусто, не возникает никаких проблем. Каждая пара легко находит два места рядом. Но через какое-то время остаются только одиночные места и одиночные промежутки между парами, которые двое не хотят занимать. В реальной жизни люди часто намеренно создают такие промежутки: чтобы положить пальто или не опираться на один подлокотник с неприятным незнакомцем. Но в нашей модели эти промежутки случайны.
Вопрос: если больше не осталось мест для пар, сколько свободных мест еще есть в кинотеатре?
Ответ следующий: оказывается, в кинотеатре с большим залом (когда в ряду много мест) доля пустующих мест примерно равна
что приближается к 13,5%72.
Хотя сам расчет слишком сложный для того, чтобы его здесь привести, легко заметить, что 13,5% находится в правой части диапазона между двумя крайними значениями. Если бы все пары сидели вплотную друг к другу, пустующих мест не было бы.
Тем не менее, если бы они расположились максимально нерационально, то есть всегда оставляя возле себя свободное место (и оставив свободное место в каждом ряду у прохода: на одном или на другом конце ряда, как показано на рисунке ниже), то пустовала бы одна треть мест, потому что каждая пара заняла бы три места: два для себя и одно промежуточное.
Догадываясь, что произвольный выбор должен лежать где-то между идеально рациональным и совершенно неэффективным, иначе говоря, быть средним между 0 и
Здесь большое число вариантов возникло из-за того, что у пар был богатый выбор в огромном кинотеатре. Наш следующий пример тоже об организации пар, только теперь не в пространстве, а во времени. То, о чем я говорю, касается довольно болезненной проблемы: со сколькими партнерами я должен встретиться прежде, чем выберу себе супругу73. Реальный вариант этой задачи слишком сложен для математического расчета. Рассмотрим упрощенную модель. Несмотря на допущения, невозможные в жизни, в ней все еще сохраняется некоторая душераздирающая романтическая неопределенность.
Предположим, вам известно, сколько потенциальных супругов вы встретите в течение жизни. (Фактическое количество не важно, лишь бы знать наперед, сколько их будет, и чтобы не слишком мало).
Предположим также, что вы могли бы оценить этих людей однозначно (то есть выбрать наилучшего), если бы увидели их всех вместе. К несчастью, это невозможно. Вы встречаете их только по одному и в случайном порядке. Таким образом, вы не можете знать, находится ли предмет ваших мечтаний с первым номером из вашего списка прямо за углом или вы уже встречались и расстались.
И правила этой игры таковы: как только вы позволите кому-то уйти, он (или она) тут же уходит. Второго шанса нет.
Наконец представим, что вы хотите остепениться. В этом случае, если вы порываете с тем «наилучшим на сегодняшний день», кого в прошлом не поместили в верхнюю часть списка, вы будете считать свою личную жизнь неудачной.
Есть ли надежда найти истинную любовь? Если да, то что нужно сделать, чтобы обеспечить себе наибольшие шансы?
Хорошая стратегия, хотя и не самая оптимальная, — разделить свою жизнь с момента, когда у вас начались романтические отношения, и до настоящего времени на две равные части. В первой половине вы мужчина нарасхват[28], а во второй — готовы к серьезным отношениям и собираетесь схватить первого же партнера, который будет лучше тех, с кем вы встречались до этого.
Следуя такой стратегии, есть по крайней мере 25-процентный шанс найти предмет мечтаний. И вот почему: шансов встретить его во второй половине жизни, когда вы созрели для серьезных отношений, у вас 50 на 50, и столько же встретить наилучшего на сегодня в первой половине жизни, когда вы еще легкомысленны. Вероятность, что произойдут оба события, составляет 25%. В этом случае вы найдете свою истинную любовь.
А все потому, что «наилучший на сегодняшний день» очень высоко поднял планку. Никто из тех, кого вы повстречаете после того, как будете готовы к серьезным отношениям, не будет привлекать вас так, как предмет мечтаний. Но даже в этот момент вы, возможно, станете сомневаться, что предмет мечтаний и есть тот единственный, кто сможет преодолеть планку, поставленную «наилучшим на сегодняшний день».
Однако оптимальная стратегия — начать серьезный поиск партнера немного раньше, после 1/е, или около 37% от вашей потенциальной взрослой жизни. Это даст вам 1/е шансов найти свою вторую половину.
Разумеется, при условии, что она в это время не будет играть в e– игры.
20. Любит не любит
«Весной, — писал Теннисон, — воображение молодого человека с легкостью поворачивается к мыслям о любви». Увы, потенциальный партнер молодого человека может иметь собственные представления о любви, и тогда их отношения будут полны бурных взлетов и падений, которые делают любовь столь волнующей и столь болезненной. Одни страдальцы от безответной ищут объяснение этих любовных качелей в вине, другие — в поэзии. А мы проконсультируемся у исчислений.
Представленный ниже анализ будет насмешливо-ироничным, но он затрагивает серьезные темы. К тому же если понимание законов любви может от нас ускользнуть, то законы неодушевленного мира в настоящее время хорошо изучены. Они принимают форму дифференциальных уравнений, описывающих изменение взаимосвязанных переменных от момента к моменту в зависимости от их текущих значений. Возможно, у таких уравнений мало общего с романтикой, но они хотя бы могут пролить свет на то, почему, по словам другого поэта, «путь истинной любви никогда не был гладким».