Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир
Шрифт:
Но есть и вторая, более серьезная трудность: притяжение различных пар атомов различно. Для одних оно сильнее, чем для других. Почему? Потому что сила притяжения меняется в зависимости от расстояния: чем ближе объекты, тем сильнее они притягиваются. Атомы самых удаленных друг от друга частей Солнца и Земли испытывают наименьшее притяжение; атомы, находящиеся близко друг к другу, притягиваются сильнее, а те, которые между ними, испытывают среднее по силе притяжение. Интегральное исчисление позволяет просуммировать все эти изменяющиеся силы. Удивительно, но это можно осуществить по крайней мере в идеализированной модели, если считать Землю и Солнце твердыми шарами, состоящими
Исторически интеграл сначала появился в геометрии для нахождения площадей криволинейных фигур. Площадь круга можно представить как сумму множества тонких ломтиков пирога. В пределе имеем бесконечное множество кусочков, каждый из которых бесконечно тонкий. Эти кусочки затем можно ловко перестроить в прямоугольник, площадь которого нетрудно найти. Это типичный пример использования интеграла. Идея интегрирования заключается в том, чтобы взять что-то сложное, нарезать его на кусочки и перетасовать так, чтобы было легко складывать.
В трехмерном обобщении этого метода Архимед (а около 400 года до н. э. и Евдокс) рассчитывал объемы различных фигур путем их представления в виде стопки множества пластин или дисков, подобной порезанной на тонкие кусочки колбасе. Посчитав объемы различных ломтиков и гениально проинтегрировав их, Архимед и Евдокс получали полный объем исходной фигуры.
Сегодня будущим математикам и ученым по-прежнему даются в качестве упражнений классические геометрические задачи, требующие решения с помощью интегралов. Это одни из самых сложных в процессе обучения упражнений, и многие студенты ненавидят их. Но нет более верного способа отточить навыки работы с интегралами, которые понадобятся в любой области, где используются количественные вычисления, — от физики до финансирования.
Одна из таких мозгодробительных задач — вычисление объема твердого тела, которое является общей частью двух одинаковых цилиндров67, пересекающихся под прямым углом.
Требуется очень богатое воображение, чтобы представить себе эту трехмерную фигуру. Поэтому нет ничего постыдного в том, чтобы признать свое поражение и отыскать другой способ ее визуализации. В настоящее время компьютерная графика68 позволяет легко воспроизвести подобные фигуры[24].
Примечательно, что фигура имеет квадратное поперечное сечение, несмотря на то что является пересечением круглых цилиндров.
Сделаем стопку из бесконечного множества тонюсеньких квадратов, которая сужается от большого квадрата в середине фигуры до все более маленьких квадратиков и превращается в точку вверху и внизу.
Изобразить фигуру — всего лишь первый шаг. Для определения ее объема надо вычислить объемы всех отдельных составляющих ее кусочков. Архимеду удалось это сделать только в силу своей поразительной изобретательности69. Он использовал механический метод, основанный на рычаге и центрах тяжести, по сути, взвешивая фигуру в своем сознании, уравновешивая ее другими, уже ему известными. Недостатком его подхода, помимо того что он требовал гениальных способностей, было то, что его можно было применить только к очень ограниченному числу фигур.
Концептуальные проблемы, подобные
Только простейшие виды изменений могли быть проанализированы до появления основной теоремы интегрального исчисления. Когда что-то меняется постепенно, с постоянной скоростью, алгебра прекрасно работает. Это из области «расстояние равно скорости, умноженной на время». Например, автомобиль движется с неизменной скоростью 60 миль в час, при этом он проедет 60 миль за первый час и 120 миль к концу второго часа.
А как насчет изменений, которые происходят при изменении скорости?
Все вокруг нас постоянно меняется: увеличение скорости упавшего с высотного здания пенни, быстрая смена потоков, эллиптические орбиты планет, наши суточные биоритмы. Только исчисление может справиться с накапливаемым эффектом от неоднородных изменений, подобных этим.
На протяжении почти двух тысячелетий после Архимеда для прогнозирования эффекта от постоянных изменений существовал только один метод — последовательное складывание различных ломтиков. Предполагалось, что вы считаете скорость изменения в пределах каждого ломтика постоянной, затем вызываете аналог «расстояние равно скорости, умноженной на время», чтобы медленно двигаться до конца ломтика, и повторяете это до тех пор, пока все кусочки не будут рассмотрены. В большинстве случаев выполнить это невозможно. Бесконечные суммы слишком сложно вычислять.
Фундаментальная теорема интегрального исчисления позволила решить многие из ранее нерешаемых задач, упростила вычисление интегралов, по крайней мере для элементарных функций (суммы и произведения степеней, экспоненты, логарифмы и тригонометрические функции), которыми описываются многие явления в природе.
С помощью нижеприведенной аналогии я надеюсь пролить свет на основную идею фундаментальной теоремы и то, зачем она нужна. (Ее предложил мой коллега Чарли Пескин из Нью-Йоркского университета.) Представьте себе лестницу, общее изменение высоты которой от нижней до верхней ступенек равно сумме высот всех ступенек. Это верно даже при условии, что высота одних ступенек больше, чем других. Количество ступенек не имеет значения.
Фундаментальная теорема интегрального исчисления работает и для функций. Если проинтегрировать производную функции от одной точки до другой, то получим ее изменение между двумя точками. В данной аналогии функции — это увеличение подъема каждой ступеньки по отношению к уровню земли. Высоты отдельных ступенек — производные. Интегрирование производных — это суммирование подъемов. А две точки — верхняя и нижняя часть лестницы.
Что это нам дает? Предположим, вас попросили просуммировать огромный список чисел. Оказывается, что бы вы ни суммировали, всякий раз вы берете интеграл по частям. Если вам удастся найти соответствующие лестницы — другими словами, если вы сможете отыскать функцию подъема, для которой подходят эти числа, — то вычислить интеграл совсем несложно. Просто нужно из верха вычесть низ[25].