Чтение онлайн

на главную

Жанры

Удовольствие от Х.Увлекательная экскурсия в мир математики от одного из лучших преподавателей в мир

Строгац Стивен

Шрифт:

Понимание того, почему в этих случаях требуется интегральное исчисление, а не обычное суммирование, мы получили в начальной школе. Давайте рассмотрим, с какими трудностями мы столкнулись бы, если бы действительно пытались вычислить силу притяжения Земли к Солнцу. Первая трудность заключается в том, что ни Солнце, ни Земля не являются точками. Это гигантские шары, состоящие из колоссального числа атомов. Каждый атом Солнца — это нечто вроде гравитационного буксира для каждого атома Земли. Поскольку атомы крошечные, то их взаимное притяжение почти бесконечно мало, но их бесконечно много и в совокупности они могут составлять ощутимую силу. И надо каким-то образом просуммировать все их воздействия.

Но есть и вторая, более серьезная трудность: притяжение различных пар атомов различно. Для одних оно сильнее, чем для других. Почему? Потому что сила притяжения меняется в зависимости от расстояния: чем ближе объекты, тем сильнее они притягиваются. Атомы самых удаленных друг от друга частей Солнца и Земли испытывают наименьшее притяжение; атомы, находящиеся близко друг к другу, притягиваются сильнее, а те, которые между ними, испытывают среднее по силе притяжение. Интегральное

исчисление позволяет просуммировать все эти изменяющиеся силы. Удивительно, но это можно осуществить по крайней мере в идеализированной модели, если считать Землю и Солнце твердыми шарами, состоящими из бесконечного числа точек непрерывной материи, причем каждая из этих точек оказывает бесконечно малое воздействие на другие. Как и во всех исчислениях, бесконечность и пределы, на помощь!

Исторически интеграл сначала появился в геометрии для нахождения площадей криволинейных фигур. Площадь круга можно представить как сумму множества тонких ломтиков пирога. В пределе имеем бесконечное множество кусочков, каждый из которых бесконечно тонкий. Эти кусочки затем можно ловко перестроить в прямоугольник, площадь которого нетрудно найти. Это типичный пример использования интеграла. Идея интегрирования заключается в том, чтобы взять что-то сложное, нарезать его на кусочки и перетасовать так, чтобы было легко складывать.

В трехмерном обобщении этого метода Архимед (а около 400 года до н. э. и Евдокс) рассчитывал объемы различных фигур путем их представления в виде стопки множества пластин или дисков, подобной порезанной на тонкие кусочки колбасе. Посчитав объемы различных ломтиков и гениально проинтегрировав их, Архимед и Евдокс получали полный объем исходной фигуры.

Сегодня будущим математикам и ученым по-прежнему даются в качестве упражнений классические геометрические задачи, требующие решения с помощью интегралов. Это одни из самых сложных в процессе обучения упражнений, и многие студенты ненавидят их. Но нет более верного способа отточить навыки работы с интегралами, которые понадобятся в любой области, где используются количественные вычисления, — от физики до финансирования.

Одна из таких мозгодробительных задач — вычисление объема твердого тела, которое является общей частью двух одинаковых цилиндров [90] , пересекающихся под прямым углом.

Требуется очень богатое воображение, чтобы представить себе эту трехмерную фигуру. Поэтому нет ничего постыдного в том, чтобы признать свое поражение и отыскать другой способ ее визуализации. В настоящее время компьютерная графика [91] позволяет легко воспроизвести подобные фигуры [92] .

90

В математической литературе два одинаковых круглых цилиндра, оси которых пересекаются под прямым углом, называются по-разному: тело Штейнмеца, или бицилиндр. Для подготовленного читателя см.иНа страничке «Википедии» тоже есть очень полезная компьютерная анимация, которая показывает, как из пересекающихся цилиндров появляется призрачное тело Штейнмеца. Его объем современными методами можно рассчитать прямолинейно, но не прозрачно.

Архимед и Цзу Чунчжи знали более простое решение с использованием метода нарезки на кусочки и сравнения площадей квадрата и круга. Удивительно ясное изложение представлено в Martin Gardner’s column Mathematical games: Some puzzles based on checkerboards, Scientific American, Vol. 207 (November 1962), p. 164. Об Архимеде и Цу Чунчжи см. Archimedes, The Method, English translation by T. L. Heath (1912), reprinted by Dover (1953); и T. Kiang, An old Chinese way of finding the volume of a sphere, Mathematical Gazette, Vol. 56 (May 1972), pp. 88–91.

Мортон Мур отмечает, что бицилиндр также нашел применение в архитектуре: «Римляне и норманны при возведении цилиндрических сводов зданий были знакомы с геометрией пересекающихся цилиндров, где при пересечении двух таких сводов формировался крестообразный свод». Об этом и применении бицилиндров в кристаллографии см. M. Moore, Symmetrical intersections of right circular cylinders, Mathematical Gazette, Vol. 58 (October 1974), pp. 181–185.

91

Интерактивная демонстрация бицилиндров и других задач интегрального счисления доступна онлайн на The Wolfram Demonstrations Project . Чтобы с ними поиграть, нужно загрузить бесплатный интерактивный Mathematica Player , который в дальнейшем позволит вам исследовать сотни других интерактивных примеров из всех разделов математики. Наглядную демонстрацию бицилиндра см. на The bicylinder demo по адресу http://demonstrations.wolfram.com/IntersectingCylinders/.

Мамикон Мнацаканян на сайте Калифорнийского технологического института (Caltech) представил серию анимаций, иллюстрирующих Архимедов метод разбиения на кусочки и его мощь. Моя любимая страничка: http://www.its.caltech.edu/~mamikon/.

На Sphere.html изображены красивые отношения между объемами сферы и двойного конуса и цилиндра, чьи высота и радиус совпадают с радиусом сферы. Это же более наглядно можно увидеть, виртуально сливая воду из цилиндра в две другие формы, см. http://www.its.caltech.edu/~mamikon/SphereWater.html.

Такие же элегантные механические аргументы на службе у математики приведены в работе M. Levi, The Mathematical Mechanic (Princeton University Press, 2009).

92

Обращаем ваше внимание на то, что на этом рисунке изображена только половина тела пересечения. Прим. ред.

Примечательно, что фигура имеет квадратное поперечное сечение, несмотря на то что является пересечением круглых цилиндров.

Сделаем стопку из бесконечного множества тонюсеньких квадратов, которая сужается от большого квадрата в середине фигуры до все более маленьких квадратиков и превращается в точку вверху и внизу.

Изобразить фигуру — всего лишь первый шаг. Для определения ее объема надо вычислить объемы всех отдельных составляющих ее кусочков. Архимеду удалось это сделать только в силу своей поразительной изобретательности [93] . Он использовал механический метод, основанный на рычаге и центрах тяжести, по сути, взвешивая фигуру в своем сознании, уравновешивая ее другими, уже ему известными. Недостатком его подхода, помимо того что он требовал гениальных способностей, было то, что его можно было применить только к очень ограниченному числу фигур.

93

Применение механического метода Архимеда к задаче нахождения объема бицилиндра см. T. L. Heath, ed., Proposition 15, The Method of Archimedes, Recently Discovered by Heiberg (Cosimo Classics, 2007), р. 48.

На странице 13 этого же тома Архимед признается, что рассматривает свой механический метод как средство для поиска теорем, а не их доказательства: «Некоторые вещи сначала мне стали ясны благодаря механическому методу, хотя в дальнейшем они должны были бы быть представлены средствами геометрии, потому что их исследование механическим методом фактически было просто демонстрацией. Но, конечно, найти доказательство проще, заранее получив некоторые знания по этому вопросу, чем если их не иметь».

Популярное изложение работы Архимеда см. R. Netz and W.Noel, The Archimedes Codex (Da Capo Press, 2009).

Концептуальные проблемы, подобные этой, ставили в тупик лучших математиков в течение следующих девятнадцати веков — до середины XVII столетия, когда Джеймс Грегори, Исаак Барроу, Исаак Ньютон и Готфрид Лейбниц обосновали то, что сейчас называется фундаментальной теоремой интегрального исчисления [94] . Она мощно сковала два типа изменений, которые изучаются в исчислениях: накапливаемые изменения, представленные интегралами, и локальные изменения, представленные производными (см. главу 17). Выявив эти связи, основная теорема значительно расширила вселенную интегралов и уменьшила утомительную работу по их вычислению. В настоящее время ее можно запрограммировать на компьютере. С ее помощью даже задача о пересечении двух цилиндров, которая относилась когда-то к уровню мирового класса, становится общедоступной.

94

Фундаментальная теорема интегрального исчисления — теорема Ньютона — Лейбница. Далее цитата из «Википедии»: «Теорема Ньютона — Лейбница утверждает, что дифференцирование и интегрирование являются взаимно обратными операциями. Точнее, это касается значения первообразных для определенных интегралов. Поскольку, как правило, легче вычислить первообразную, чем применять формулу определенного интеграла, теорема дает практический способ вычисления определенных интегралов. Она также может быть интерпретирована как точное утверждение о том, что дифференцирование является обратной операцией интегрирования.

Теорема гласит: если функция f непрерывна на отрезке [a, b] и F есть функция, производная которой равна f на интервале (a, b), то:

Кроме того, для любого x из интервала (a, b)

Только простейшие виды изменений могли быть проанализированы до появления основной теоремы интегрального исчисления. Когда что-то меняется постепенно, с постоянной скоростью, алгебра прекрасно работает. Это из области «расстояние равно скорости, умноженной на время». Например, автомобиль движется с неизменной скоростью 60 миль в час, при этом он проедет 60 миль за первый час и 120 миль к концу второго часа.

А как насчет изменений, которые происходят при изменении скорости?

Все вокруг нас постоянно меняется: увеличение скорости упавшего с высотного здания пенни, быстрая смена потоков, эллиптические орбиты планет, наши суточные биоритмы. Только исчисление может справиться с накапливаемым эффектом от неоднородных изменений, подобных этим.

На протяжении почти двух тысячелетий после Архимеда для прогнозирования эффекта от постоянных изменений существовал только один метод — последовательное складывание различных ломтиков. Предполагалось, что вы считаете скорость изменения в пределах каждого ломтика постоянной, затем вызываете аналог «расстояние равно скорости, умноженной на время», чтобы медленно двигаться до конца ломтика, и повторяете это до тех пор, пока все кусочки не будут рассмотрены. В большинстве случаев выполнить это невозможно. Бесконечные суммы слишком сложно вычислять.

Фундаментальная теорема интегрального исчисления позволила решить многие из ранее нерешаемых задач, упростила вычисление интегралов, по крайней мере для элементарных функций (суммы и произведения степеней, экспоненты, логарифмы и тригонометрические функции), которыми описываются многие явления в природе.

С помощью нижеприведенной аналогии я надеюсь пролить свет на основную идею фундаментальной теоремы и то, зачем она нужна. (Ее предложил мой коллега Чарли Пескин из Нью-Йоркского университета.) Представьте себе лестницу, общее изменение высоты которой от нижней до верхней ступенек равно сумме высот всех ступенек. Это верно даже при условии, что высота одних ступенек больше, чем других. Количество ступенек не имеет значения.

Поделиться:
Популярные книги

Эффект Фостера

Аллен Селина
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Эффект Фостера

Аромат невинности

Вудворт Франциска
Любовные романы:
любовно-фантастические романы
эро литература
9.23
рейтинг книги
Аромат невинности

Осознание. Пятый пояс

Игнатов Михаил Павлович
14. Путь
Фантастика:
героическая фантастика
5.00
рейтинг книги
Осознание. Пятый пояс

Вдова на выданье

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Вдова на выданье

Кодекс Крови. Книга Х

Борзых М.
10. РОС: Кодекс Крови
Фантастика:
фэнтези
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга Х

Младший научный сотрудник

Тамбовский Сергей
1. МНС
Фантастика:
попаданцы
альтернативная история
6.40
рейтинг книги
Младший научный сотрудник

Здравствуй, 1984-й

Иванов Дмитрий
1. Девяностые
Фантастика:
альтернативная история
6.42
рейтинг книги
Здравствуй, 1984-й

Вечная Война. Книга VIII

Винокуров Юрий
8. Вечная Война
Фантастика:
боевая фантастика
юмористическая фантастика
космическая фантастика
7.09
рейтинг книги
Вечная Война. Книга VIII

Ваше Сиятельство 3

Моури Эрли
3. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 3

Последний попаданец 12: финал часть 2

Зубов Константин
12. Последний попаданец
Фантастика:
фэнтези
юмористическое фэнтези
рпг
5.00
рейтинг книги
Последний попаданец 12: финал часть 2

Паладин из прошлого тысячелетия

Еслер Андрей
1. Соприкосновение миров
Фантастика:
боевая фантастика
попаданцы
6.25
рейтинг книги
Паладин из прошлого тысячелетия

Темный Лекарь

Токсик Саша
1. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь

Гром над Академией. Часть 1

Машуков Тимур
2. Гром над миром
Фантастика:
фэнтези
боевая фантастика
5.25
рейтинг книги
Гром над Академией. Часть 1

Последняя Арена 5

Греков Сергей
5. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 5