В мире металлов
Шрифт:
Представим себе, что нам удалось изобрести космический корабль, который движется за счет того, что выбрасывает продукты реакций дейтерий — дейтерий и дейтерий - тритий. На таком корабле можно стартовать в космос, поймать там несколько астероидов и отбуксировать их на Землю. (Идея, правда, не нова). Если не очень перегружать ракету, то можно было бы доставить на Землю 1000 тонн астероидов, затратив всего около тонны дейтерия. Я, честно говоря, не знаю, из какого вещества состоят астероиды. Однако вполне может оказаться, что наполовину они состоят из никеля. Известно, что 1 фунт никеля стоит 50 центов, а 1 фунт дейтерия - около 100 долларов. Таким образом, на 1 миллион долларов мы могли бы купить 5 тонн дейтерия и, израсходовав их, доставить на Землю 2500
Я уже было подумывал, а не организовать ли мне Американскую Компанию по Добыче и Доставке Астероидов (АКДДА) ?. . . Если кто-либо из присутствующих с крупным счетом в банке пожелает войти в число учредителей, пусть подойдет ко мне после банкета".
Заводы на Луне
По мнению многих ученых, постепенное истощение земных недр рано или поздно приведет к необходимости начать разработку минеральных и рудных кладовых космоса. Академик С.П.Королев говорил: "Человечество порой напоминает собой субъекта, который, чтобы натопить печь и обогреться, ломает стены собственного дома вместо того, чтобы съездить в лес и нарубить дров". Разумеется, добытая, например, на Луне и доставленная на нашу планету тонна железной руды обойдется, скажем прямо, недешево. Но ведь и первая тонна угля, полученного в современной шахте, стоит огромных денег, зато тысячная тонна уже намного дешевле, а миллионная и подавно. Так же будет со временем снижаться и себестоимость космической железной руды. Кстати, а обязательно ли доставлять на Землю руду? Нельзя ли извлекать из нее железо непосредственно в космосе?
Еще в 1963 году советский ученый Э.Иодко предложил свою технологию получения лунного железа. Он полагает, что железо на Луне следует не плавить, а возгонять — переводить из твердого состояния в газообразное. При этом пары железа, проходя через шахту с кусками углеродистого материала, превратятся в смесь паров железа, углерода и угарного газа. В конденсаторе железо и углерод, соприкоснувшись с холодной поверхностью бесконечного транспортера, перейдут в твердое состояние и осядут на транспортере, а угарный газ уйдет в лунную "атмосферу". Регулируя температуру в шахте, можно будет повышать или понижать содержание углерода и, следовательно, получать сталь разных марок.
"Производство металла в условиях глубочайшего вакуума Луны и других космических тел — писал Э.Иодко, — позволит готовить действительно неземные по прочности, пластичности и иным свойствам стали и сплавы, не содержащие газов и неметаллических включений. По существу неблагоприятные для металлургии условия мы имеем не на Луне, а на Земле, с ее плотной и насыщенной кислородом атмосферой . . .
Луна и другие небесные тела, лишенные атмосферы, со временем не только смогут обеспечить нужды космических полетов в рядовых и высококачественных металлах, но и станут снабжать своей металлургической продукцией Землю и другие планеты".
"Эфирные поселения"
Человек давно уже рассматривает космическое пространство как место будущих поселений. Разработано множество проектов огромных орбитальных станций, немало космических городов существует на страницах научно-фантастических книг. Создана и теория "эфирных поселений", автором которой является К.Э.Циолковский. Любопытно, что для их сооружения ученый предлагал использовать материалы планет и астероидов.
В 1975 году в США был опубликован проект внеземного поселения, удаленного на расстояние около 400 тысяч километров от Земли и Луны. Этот "эфирный город", насчитывающий 10 тысяч человек, представляет собой цилиндр диаметром 100 метров и длиной один километр. Автор проекта П.Паркер считает, что 98 % материалов, необходимых для этого космического строительства, можно будет добывать на Луне.
Интересный проект орбитальной станции разработан группой принстонских ученых, возглавляемой профессором физики Джерардом О'Нейлом. "Создание новых искусственных поселений, — пишет О'Нейл, — возможно даже при существующей технологии, новые методы, которые могут понадобиться, не выходят за пределы знаний сегодняшнего дня. Ключи к решению проблемы — отношение к области вне Земли не как к пустоте, а как к среде, богатой материей и энергией ... В космосе солнечной энергии много, использовать ее удобно. Луна и астероидный пояс дадут необходимые материалы . . ."
О'Нейл приводит в проекте детальный экономический расчет космического строительства, указывает, где и в каком количестве можно будет брать необходимые материалы. С Земли он не намерен доставлять даже воду: по его мнению, следует транспортировать жидкий водород, а кислород, нужный для синтеза воды, он предлагает получать на Луне. Там же, по мысли ученого, можно будет добыть и основные строительные материалы — алюминий, титан, кремний.
Автор этого проекта придумал даже специальные машины для транспортирования руды по Луне и электрические катапульты для выброса готовых строительных конструкций в открытый космос - к месту, где будет сооружаться далекий от Земли город-спутник.
Что за гранью 2000 года?
Металлургия по сути своей очень земная, очень сегодняшняя область человеческой деятельности, и, видимо, поэтому писатели-фантасты не балуют ее своим вниманием. Что ж, их можно понять: ведь "снарядить" экспедицию к далекому созвездию Кассиопеи гораздо легче и увлекательнее, чем "организовать" экскурсию на металлургический завод будущего.
Ученые, однако, не раз задумывались над вопросом: чем ознаменует металлургическая наука и практика вступление в новое тысячелетие. Любопытны в этом отношении мысли, высказанные выдающимся советским металлургом академиком И.П.Бардиным в интервью для книги "Репортаж из XXI века": "Я думаю, что на первых порах человек станет "конструировать" с помощью радиоактивного воздействия легированные стали требующегося состава, не вводя в них редких и дорогих легирующих добавок, а создавая их прямо в ковше расплавленной стали из атомов железа, углерода, может быть, серы и фосфора, может быть, из атомов распространенного элемента специально для этой цели добавленного в расплав. Это можно представить себе так. Движется наполненный до краев ковш с плещущейся упругими волнами сталью. На несколько десятков секунд он останавливается около какой-то машины, похожей на те, что применяются в медицине для лечения злокачественных опухолей рентгеновскими лучами. Свинцовая груша со скрытым в ней источником радиоактивного излучения требующегося состава склоняется над ковшом, — и в недрах расплава под влиянием потока лучей совершаются сложнейшие ядерные превращения. Через несколько минут сталь разливают по изложницам, но ее состав уже не тот, что был совсем недавно. И еще несколько дней — уже в затвердевшей стали — будет меняться этот состав, будет происходить под влиянием вызванной облучением собственной радиоактивности изменение химического состава металла. Вероятно, этим же способом — изменением структуры атомных ядер, искусственным превращением элементов — можно будет получать руды редких и рассеянных элементов. Возможно, появится целая отрасль промышленности — радиационная металлургия, которая будет заниматься изготовлением редких химических элементов из более распространенных. Но вряд ли, учитывая всю стремительность технического прогресса, радиационная металлургия разовьется в отрасль промышленности даже к началу XXI века. Это все-таки дело более отдаленного времени".
КОНЕЦ