Чтение онлайн

на главную - закладки

Жанры

Шрифт:

В 1963 году советским ученым удалось в большой степени справиться и с главной трудностью, которая возникает при подобных опытах, — феноменальной неустойчивостью плазменного шнура. Обычно полученную с таким трудом плазму удавалось удерживать вдали от стенок сосуда не более стотысячных долей секунды. Использование магнитной «бутыли» особой формы позволило группе советских ученых во главе с академиком Л. А. Арцимовичем удерживать плазму с температурой 40 миллионов градусов в течение сотых долей секунды 20*. Решающий успех! 21*

Открывают ли эти опыты путь к созданию термоядерного двигателя? Пожалуй, теперь уже можно с уверенностью сказать,

что да. И все-таки это только самое начало. Впереди труднейшие препятствия. Мы еще не знаем точно, будет ли термоядерный двигатель установлен на самолетах. Но мы твердо верим в могучую силу науки.

Исчерпывается ли атомными двигателями семейство «экзотических» авиационных двигателей? Вовсе нет. Так, в последнее время стал особенно повышаться интерес к «экзотическим» двигателям другого типа — так называемым электрическим ракетным двигателям. Несмотря на свою молодость, эти двигатели привлекают к себе большое внимание ученых; уже существует много разновидностей подобных двигателей.

Одним из важнейших типов электрических ракетных двигателей являются так называемые ионные двигатели. Главное принципиальное отличие ионных, как, впрочем, и других электрических ракетных двигателей, от обычных заключается в том, что в них совсем по-иному осуществляется истечение рабочего вещества из двигателя. Если из обычных ракетных двигателей газы вытекают наружу, потому что внутри них создается давление намного большее, чем в окружающей атмосфере, то в ионных двигателях такого повышенного давления нет.

Какие же силы заставляют в этом случае частицы газа в реактивной струе с большой скоростью вытекать из двигателя наружу? Зти силы — электрические.

Хорошо известно из курса физики, что одинаково заряженные электрические частицы отталкиваются друг от друга, а противоположно заряженные притягиваются. Это — так называемые электростатические, или кулоновы, силы. Они играют большую роль в технике. В частности, например, на использовании этих сил основаны некоторые виды «ядерной артиллерии», с помощью которой ученые бомбардируют атомные ядра, изучая их строение и действующие внутри ядер силы. Электрические силы воздействуют в этом случае на частицы, имеющие электрический заряд, например отрицательно заряженные электроны или положительно заряженные протоны (ядра атомов водорода) или альфа-частицы (ядра атомов гелия). В результате такого воздействия частицы разгоняются до огромных скоростей, иногда близких к максимально возможной в природе — скорости света в вакууме. Таким образом, эти частицы и превращаются в удобные «снаряды» для атомной бомбардировки.

Мысль использовать электрические силы для реактивных двигателей потому, собственно говоря, и приходит в голову, что с их помощью легко достигнуть больших скоростей истечения, совершенно не достижимых в обычных двигателях.

Но как использовать электрические силы для ускорения молекул газов, вытекающих из двигателя через сопло? Ведь эти молекулы не имеют заряда, они нейтральны, а на такие частицы электрические силы практически не действуют.

Однако нельзя ли сообщить молекулам электрический заряд какого-нибудь знака? Оказывается, можно. И в некоторых случаях достаточно легко. Такой процесс не только известен, но и широко используется в технике. Этот процесс электризации молекул носит название ионизации, и соответственно этому заряженные молекулы называются ионами. Вот почему, в частности, верхние слои земной атмосферы, состоящие в основном из электрически заряженных частиц воздуха, называют ионосферой.

Чтобы ионизировать молекулу, достаточно, например, оторвать от нее один из электронов ее электронной оболочки. Тогда молекула окажется заряженной положительно. Особенно просто это сделать в том случае, если один из электронов

на электронной оболочке слабо связан с ядром атома, как это бывает в атомах металлов. Можно дважды, трижды и т. д. ионизировать молекулу, лишая ее электронную оболочку двух, трех и т. д. электронов (как известно, в недрах звезд ядра атомов вовсе лишены электронов).

Вот почему обязательным элементом ионного двигателя является так называемая ионизационная камера, в которой из молекул рождаются ионы. Для этого достаточно, например, пропускать молекулы через раскаленную металлическую сетку; слабо связанные с ядром атома электроны не выдерживают увеличивающихся из-за нагрева колебаний и отрываются от молекулы.

Остальное уже просто. Раз есть ионы, то их «нетрудно разогнать до больших скоростей с помощью электростатических сил. Можно воспользоваться, в частности, каким-нибудь ускорителем, вроде применяющихся в лабораториях ядерной физики, хотя здесь потребуются несравненно меньшие скорости. А можно просто пропустить ионы через конденсатор, пластины которого несут противоположный заряд. Если сделать такие пластины в виде сеток или установить их под углом друг к другу, то конденсатор будет испускать поток заряженных частиц большой скорости. Чтобы сам двигатель при этом не заряжался электричеством противоположного знака, оторванные от молекул электроны нужно тоже выбросить наружу с помощью такого же устройства.

Теория и опыт показывают, что в ионном двигателе нетрудно достигнуть скорости истечения 100 километров в секунду и даже более. Это в десятки и сотни раз больше, чем в обычных «химических» ракетных двигателях. Соответственно больше, естественно, и тяга, развиваемая каждым килограммом вытекающих частиц (ими могут быть, например, ионы металлов цезия или рубидия).

Может быть, ионному ракетному двигателю и суждено стать авиационным двигателем завтрашнего дня?

Нет, дело обстоит не так просто. Прежде всего возникает вопрос об источнике электрического тока, необходимом для такого двигателя. Не устанавливать же на самолете электростанцию обычного типа… Очень подходящим был бы атомный двигатель, в особенности с непосредственным преобразованием ядерной энергии в электрическую, но такого двигателя еще нет. А потом, как показывает расчет, ионный двигатель способен развивать лишь сравнительно небольшую тягу, так как количество вытекающих из него частиц при практически осуществимой мощности может быть относительно малым.

Вот почему ионные двигатели найдут себе, вероятно, применение в такой новой области авиации, какой является астронавтика. Для космических кораблей, совершающих полеты в поле слабого тяготения, то есть вдалеке от планет, ионный двигатель может оказаться очень выгодным. Впрочем, не исключено его применение в сочетании с другими двигателями и для сверхвысотной авиации.

Ионный двигатель далеко не единственный тип электроракетного двигателя, который может быть с успехом использован для этих целей. Наряду с ионными ученые разных стран исследуют в настоящее время и другие типы электрических ракетных двигателей, в которых обеспечивается гораздо более высокая скорость истечения, чем в самых совершенных обычных, то есть химических ракетных двигателях.

18*Действительно, химическая энергия топлива переходит в кинетическую энергию вытекающих газов, и при том же значении этой кинетической энергии скорость вытекающих из двигателя частиц будет тем больше, чем меньше их масса, — ведь кинетическая энергия равна произведению массы на квадрат скорости, деленному пополам.

19*Об этом говорится, например, в журнале «Эс Эй И Джорнел», 1957 г. Подробнее о перспективах атомной авиации см. в главе IX.

Поделиться:
Популярные книги

Меняя маски

Метельский Николай Александрович
1. Унесенный ветром
Фантастика:
боевая фантастика
попаданцы
9.22
рейтинг книги
Меняя маски

Курсант: назад в СССР 9

Дамиров Рафаэль
9. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: назад в СССР 9

Лорд Системы 13

Токсик Саша
13. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 13

Кротовский, может, хватит?

Парсиев Дмитрий
3. РОС: Изнанка Империи
Фантастика:
попаданцы
альтернативная история
аниме
7.50
рейтинг книги
Кротовский, может, хватит?

"Дальние горизонты. Дух". Компиляция. Книги 1-25

Усманов Хайдарали
Собрание сочинений
Фантастика:
фэнтези
боевая фантастика
попаданцы
5.00
рейтинг книги
Дальние горизонты. Дух. Компиляция. Книги 1-25

Месть Пламенных

Дмитриева Ольга
6. Пламенная
Фантастика:
фэнтези
6.00
рейтинг книги
Месть Пламенных

Как я строил магическую империю 6

Зубов Константин
6. Как я строил магическую империю
Фантастика:
попаданцы
аниме
фантастика: прочее
фэнтези
5.00
рейтинг книги
Как я строил магическую империю 6

Идеальный мир для Лекаря 24

Сапфир Олег
24. Лекарь
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Идеальный мир для Лекаря 24

Внешняя Зона

Жгулёв Пётр Николаевич
8. Real-Rpg
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Внешняя Зона

Архил…? Книга 3

Кожевников Павел
3. Архил...?
Фантастика:
фэнтези
попаданцы
альтернативная история
7.00
рейтинг книги
Архил…? Книга 3

Идеальный мир для Лекаря 18

Сапфир Олег
18. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 18

Барон ненавидит правила

Ренгач Евгений
8. Закон сильного
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Барон ненавидит правила

Идеальный мир для Лекаря 14

Сапфир Олег
14. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 14

Дворянская кровь

Седой Василий
1. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
7.00
рейтинг книги
Дворянская кровь