В небе завтрашнего дня
Шрифт:
Но нельзя ли заставить обычные самолеты взлетать прямо вверх? Так ли необходим длинный разбег при взлете? Нельзя ли обойтись без него?
Орнитоптер — птицекрылый летательный аппарат.
Ответ очевиден. Разбег самолета при взлете необходим, чтобы подъемная сила крыла стала равной и затем большей, чем вес самолета, иначе самолет не оторвется от земли. Чем тяжелее самолет и меньше его крыло, тем больше необходимая взлетная скорость и, значит, разбег при взлете. Двигатели создают тягу, которая заставляет самолет все быстрее разбегаться по взлетной дорожке,
Может, сильно увеличив тягу, удастся совсем избавиться от разбега при взлете? Очевидно, нет, так как все равно понадобится какое- то время, чтобы набрать нужную скорость. Значит, разбег хоть и уменьшится, но все же сохранится.
И тем не менее именно такое увеличение тяги двигателей открывает возможность вертикального взлета. Только для этого двигатели должны тянуть самолет не вдоль земной поверхности, а перпендикулярно к ней, вверх, как несущий винт вертолета.
На самолетах вертикального взлета в настоящее время устанавливают двигатели двух типов — либо турбовинтовые, либо турбореактивные. В первом случае обычно мощный турбовинтовой двигатель приводит в движение два соосных воздушных винта, вращающихся в разные стороны. Понятно, почему необходимы именно два винта с разносторонним вращением — ведь иначе при взлете самолет стал бы вращаться в сторону, противоположную вращению винта. Не зря же на вертолетах с одним несущим винтом у хвоста устанавливается небольшой дополнительный винт, препятствующий этому вращению. В таком винте нет необходимости, когда на вертолете два несущих винта с противоположным вращением, как, например, на новом вертолете «КА-18» конструкции Н. И. Камова.
Странный, необычный вид имеет самолет вертикального взлета на земле. Его нос устремлен вверх, прямо в небо. Вот так же примерно выглядит самолет, устанавливаемый для взлета с помощью специальной пусковой установки — катапульты. Но такая установка «выстреливает» машину в небо, а при вертикальном взлете самолет поднимается с помощью собственного двигателя. Потом он совершает такую же посадку. Правда, он иногда садится на специальную стартовую установку, с помощью которой этот самолет и перевозят.
Опирается он обычно на три или четыре короткие «ноги» с опорными дисками, почти как межпланетный корабль где-нибудь на Луне. Он напоминает птицу с опущенными крыльями, — иногда такие самолеты называют поэтому «пингвинами». Летчик при взлете почти лежит на спинке своего кресла, которое обычно делается поворачивающимся. Но вот двигатель запущен, его мощность увеличена до максимальной, и самолет вертикально уходит в небо. После того как взлетевший самолет наберет высоту, он разворачивается и далее совершает свой полет уже в обычном, горизонтальном положении.
Так самолеты овладели искусством вертикального взлета и посадки, не потеряв при этом способности летать с огромной скоростью. И все же такие самолеты еще далеко не решают проблемы.
Конечно, они найдут применение и как истребители, и как дальние маршрутные такси. Меньше чем за час на них можно перелететь из Ленинграда в Москву, причем взлететь и сесть прямо в центре города!
Но воспользоваться таким такси сможет далеко не всякий — билет будет стоить очень дорого, гораздо дороже, чем, например, на обычный вертолет. И дело здесь вовсе не в том, что придется доплатить за скорость, как это часто бывает в наземном транспорте. Уж очень невыгоден самолет вертикального взлета, слишком много топлива расходует его мощный двигатель.
Тут мы коснулись важнейшей проблемы эксплуатации летательных аппаратов вертикального взлета и посадки. Мало построить аппарат, обладающий таким свойством, нужно, чтобы он был достаточно экономичным. Конечно, в военной авиации это требование отступает на второй план, но в гражданской оно обычно является решающим.
Понятно, что экономичность эксплуатации летательных аппаратов различного рода определяется рядом обстоятельств. Здесь и потребный расход топлива, и первоначальная стоимость изготовления, и расходы по эксплуатации и ремонту и т. д. Поэтому определить экономичность совсем не так просто, это требует тщательного анализа в каждом отдельном случае. Однако некоторые общие сведения можно получить, если вновь обратиться к самым основам физики полета.
Выше
Самолеты вертикального взлета — «пингвины».
Чтобы ответить на этот вопрос, целесообразно сравнить величину реактивной силы в килограммах, которая приходится на каждую лошадиную силу мощности силовой установки. Наиболее выгодным при таком сравнении окажется то устройство, в котором скорость отбрасывания воздуха меньше. В этом нет ничего удивительного, если вдуматься. Ведь мощность двигателя затрачивается на то, чтобы сообщить отбрасываемому воздуху какую-то кинетическую энергию, которая, как известно, пропорциональна квадрату скорости. Поэтому при увеличении скорости отбрасываемого воздуха, например, вдвое мощность двигателя должна возрасти вчетверо. Сила же реакции отбрасываемой струи пропорциональна скорости отбрасывания в первой степени: когда скорость возрастает вдвое, то и сила увеличивается вдвое. Таким образом, при увеличении скорости отбрасывания вдвое на каждый килограмм реактивной силы затрачивается и вдвое больше лошадиных сил. Значит, чем меньше скорость отбрасывания, тем выгоднее устройство для создания подъемной силы. Одну и ту же подъемную силу выгоднее Создавать, отбрасывая как можно большую массу воздуха с возможно меньшей скоростью.
Конечно, этот весьма упрощенный метод может служить только для грубого качественного сравнения. Но все же он дает ключ к оценке возможных областей выгодного применения летательных аппаратов различного типа. Оказывается, с наименьшей скоростью отбрасывает воздух машущее крыло, затем идут — в порядке возрастания этой скорости — неподвижное крыло, несущий винт, пропеллер, турбореактивный двигатель и ракетный двигатель. Поэтому при той же мощности двигателя орнитоптер сможет поднять больший груз, чем самолет, а самолет — больший груз, чем вертолет. Вертолет, в свою очередь, поднимет больший груз, чем самолет вертикального взлета с турбовинтовым двигателем, а еще менее выгоден самолет вертикального взлета с турбореактивным двигателем, не говоря уже о ракетном.
Вот почему самолеты вертикального взлета не выгодны для гражданской авиации. Эти экспрессы уж очень дороги в эксплуатации, так как потребляют чрезмерно много топлива при взлете. Но не только поэтому. Двигатели таких самолетов должны быть чрезмерно мощными — это тоже диктуется условиями вертикального взлета и посадки. Ведь когда самолет вертикального взлета переходит на обычный, горизонтальный полет, то подъемная сила создается уже крылом, что требует в несколько раз меньшей затраты мощности. Значит, для такого полета можно было бы использовать гораздо менее мощный двигатель, чем для взлета. К сожалению, заменить один двигатель другим в полете невозможно: хочешь не хочешь, самолет вынужден нести на себе более мощный, а значит, и более тяжелый и громоздкий, чем это необходимо, двигатель. Только когда самолет летит с очень большой скоростью, раза в два, а то и более превосходящей скорость звука, на полет расходуется вся мощность двигателя. Но длительный полет на такой скорости, в свою очередь, не выгоден из-за чрезмерно большого расхода топлива…
Следовательно, будущее турбовинтовых и турбореактивных пассажирских самолетов вертикального взлета ограничено только высокоскоростным, экспрессным сообщением. Но и это очень важно, конечно. Так что небо завтрашнего дня будут бороздить многие подобные самолеты. Вовсе не обязательно они должны походить на рассмотренные нами выше: не очень-то удобно для пассажиров, когда при взлете длинный фюзеляж расположен вертикально.
Вот почему уже создаются и испытываются пассажирские самолеты вертикального взлета и посадки других типов. Фюзеляж у них имеет обычное — горизонтальное — положение, а двигатели поворачиваются: при взлете и посадке они «смотрят» вверх, создавая подъемную силу, а в горизонтальном полете занимают обычное положение.