Чтение онлайн

на главную

Жанры

Вечный sapiens. Главные тайны тела и бессмертия
Шрифт:

А ведь физика лежит в фундаменте нашего тела и потому многое в нашей жизни определяется чисто физической конкретикой. Вот вы, например, никогда не задумывались о том, отчего температура нашего тела 36,6°С? Почему не 44,3°С, не 55,8°С, не 22,7°С, наконец? А ведь градуса 22 было бы вполне логично: примерно такая среднесуточная температура в экваториальных областях. То есть, если стоит гипотетическая задача сконструировать теплокровное, то можно рассуждать так: сделаем рабочую температуру его «двигателя» близкой в среднесуточной – тогда ночью, когда температура упадет, теплокровное будет включать «калорифер» и подогреваться само, а днем работать на «внешнем источнике» – от солнышка. (Кстати, подобные полутроллейбусы-полуавтобусы я видел в Норвегии – там, где нет проводов, они едут на дизеле, а где есть провода, выпускают усы.) Можно днем экономить! А поэкономить есть что, ведь в отличие от хладнокровных мы, теплокровные, кушаем в десять раз больше, поскольку девять десятых всего съеденного идет на обогрев атмосферы, ведь нам приходится постоянно поддерживать рабочую температуру тела выше температуры окружающей среды.

Конечно, помимо недостатков (топлива такому созданию требуется на порядок больше), теплокровность дает грандиозные преимущества: мы теперь вполне самостоятельны и не зависим от температуры окружающей среды, как какие-нибудь крокодилы или рептилии, которые поутру выползают на солнышко и часами разогреваются до рабочей температуры. У некоторых хладнокровных тварей даже есть специальные кожистые «паруса», играющие роль радиаторов. Они распускают их навстречу солнцу, чтобы разогревшаяся в этом солнечном «парусе» кровь побыстрее разнесла тепло по телу. Сквозь эту кожистую пленку на просвет даже видны ниточки сосудов.

Нам внешний обогрев не нужен, у нас есть внутренняя топка. Мы автономны. Причем рабочий диапазон температур у человека поддерживается в очень узких пределах. Температура тела, хотя и колеблется вслед за суточным ритмом (самая низкая температура у человека от 4 до 6 часов утра, самая высокая к вечеру, а также после приема пищи и во время работы), но общий размах колебаний в штатном режиме не превышает 1–1,5 градусов. Если смотреть по локализации, то мы увидим, что температура мозга и внутренних органов повыше, а температура кожи пониже, однако в целом нормальной человеческой можно считать температуру в 37 градусов.

Примечательно, что все остальные теплокровные функционируют практически в том же температурном диапазоне. Лошадь работает при 39°С, овца при 39°С, бык при 39°С, свинья при 39,7°С, кролик 39,8°С, у обезьян температура 38,1°С, у птиц она повыше и переваливает за «сороковку»… То есть практически все теплокровные существа работают в довольно узком диапазоне температур – от 36 до 42 градусов Цельсия.

Почему? Биологи ответа на этот вопрос не знают. Потому как ответ лежит вне рамок биологии. И даже вне рамок химии. Он – в физике. Дело тут в свойствах основного теплоносителя – воды, ведь 70 % нашего тела состоит из нее, родимой. Вода является главным аккумулятором тепла в нашем теле – точно так же, как океаны являются главным аккумулятором тепла для планеты в целом.

А вода имеет одно интересное свойство (точнее, не одно, но о других парадоксальных свойствах воды мы поговорим позже) – ее теплоемкость экстремально зависит от температуры. Вы, конечно же, помните, что такое удельная теплоемкость вещества – это количество энергии (в калориях), которое нужно вбухать в килограмм этого вещества, чтобы повысить его температуру на 1 градус. Теплоемкость воды вообще чудовищна, она в разы выше, чем у других веществ. Прекрасный накопитель тепла!

Так вот, теплоемкость воды минимальна в диапазоне температур от 36 до 40 градусов. Именно в эту потенциальную ямку и закатились теплокровные организмы. Поняли, в чем суть? Нам все время надо подогреваться – поддерживать температуру тела выше температуры окружающей среды. Иными словами нам все время нужно греть воду. И выгоднее всего делать это в означенном диапазоне температур, потому что для нагрева килограмма воды при температуре 37°С требуется меньше всего энергии. Энергетически это самая выгодная для поддержания температура. Любой конструктор сделал бы то же самое, проектируя «движок» млекопитающих.

Так что знание физики для понимания человеческой сути – штука немаловажная! Поэтому в 1992 году в МГУ был открыт факультет фундаментальной медицины, где готовят редких специалистов – врачей со знанием фундаментальных наук – физики, химии, математики, молекулярной биологии. Там проводятся семинары по «медицинской физике», и никого это уже не удивляет. Правда, как я понял, основная идея в создании подобного факультета заключалась в том, что в медицину нынче приходит довольно сложное оборудование, основанное на физических принципах – ультразвуковое, лазерное… Известный ныне всем томограф, например, основан на эффекте ядерно-магнитного резонанса, то есть «резонансного поглощения электромагнитной энергии веществом, содержащим ядра с ненулевым спином во внешнем магнитном поле, обусловленное переориентацией магнитных моментов ядер». И хотелось бы, чтобы врачи хотя бы в общих чертах, так сказать, понимали, о чем речь, а то ведь они пользуются этими штуками, как обыватель телевизором – включают и выключают, а что внутри и как работает – бог весть.

А ведь когда-то физику и медицину создавали одни и те же люди, их тогда называли естественниками! И разделение между ними произошло не более сотни – полутора сотен лет назад.

Мало кто знает, что Томас Юнг, которого мы все с вами проходили в школе на уроках физики в разделе о волновой природе света, был врачом.

Уильям Гилберт, которого называют отцом электромагнитных исследований, был придворным врачом при дворе Елизаветы I. Он изобрел электроскоп, ввел в науку понятие магнитного полюса и выпустил в 1600 году фундаментальный труд «О магните, магнитных телах и великом магните Земли».

Герман Гельмгольц, который разработал термодинамическую теорию химических процессов, ввел понятие свободной энергии, заложил основы вихревой гидродинамики и прописал на языке математики закон сохранения энергии, закончил Военно-медицинский институт в Берлине и работал эскадронным хирургом гусарского полка в Потсдаме, а диссертацию защитил по строению нервной системы. Именно он открыл нейроны, и было ему на тот момент всего 22 года.

Какие люди! Глыбы!.. И перечислять эти глыбы можно долго.

Каждому школьнику известен маятник Фуко, но не каждый школьник знает, что Фуко был дипломированным врачом… Такие фундаментальные для физики понятия, как температура и градус, ввел в обиход античный медик Клавдий Гален… В гидродинамике динамическую вязкость меряют в пуазах в честь французского врача Жана Пуазейля… В механике вал, передающий крутящий момент под углом, назван в честь его изобретателя – итальянского доктора Джероламо Кардано… Знаменитый медик Сеченов открыл закон растворимости газов в водной среде в зависимости от присутствия в ней электролитов…

Да, были люди. Не то, что нынешнее племя! Нынче все чаще можно услышать слова о кризисе в науке, которая слишком обузилась, потеряла широту охвата, а ведь только с больших высот соседних наук можно уловить некие общие тенденции, действующие и в твоей родной специальности. Разве построил бы свою замечательную металлогидридную теорию геолог Владимир Ларин, если бы не поднялся из глубин геологии до высот астрофизики и физики электромагнетизма? [1]

К сожалению, современные студенты и школьники любят лениться и задаваться вопросом: «А зачем мне это надо?» Зачем мне, врачу, знание физики?.. Зачем мне, гуманитарию математика?.. Для чего мне, биологу, квантовая механика?..»

1

См. об этой теории книгу Никонова «Верхом на бомбе».

Популярные книги

Бальмануг. (Не) Любовница 1

Лашина Полина
3. Мир Десяти
Фантастика:
юмористическое фэнтези
попаданцы
5.00
рейтинг книги
Бальмануг. (Не) Любовница 1

Дарующая счастье

Рем Терин
Любовные романы:
любовно-фантастические романы
6.96
рейтинг книги
Дарующая счастье

Мой любимый (не) медведь

Юнина Наталья
Любовные романы:
современные любовные романы
7.90
рейтинг книги
Мой любимый (не) медведь

Хочу тебя любить

Тодорова Елена
Любовные романы:
современные любовные романы
5.67
рейтинг книги
Хочу тебя любить

Этот мир не выдержит меня. Том 1

Майнер Максим
1. Первый простолюдин в Академии
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Этот мир не выдержит меня. Том 1

Черный маг императора 2

Герда Александр
2. Черный маг императора
Фантастика:
юмористическая фантастика
попаданцы
аниме
6.00
рейтинг книги
Черный маг императора 2

Хозяйка дома на холме

Скор Элен
1. Хозяйка своей судьбы
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Хозяйка дома на холме

Мама из другого мира. Дела семейные и не только

Рыжая Ехидна
4. Королевский приют имени графа Тадеуса Оберона
Любовные романы:
любовно-фантастические романы
9.34
рейтинг книги
Мама из другого мира. Дела семейные и не только

Возвращение Низвергнутого

Михайлов Дем Алексеевич
5. Изгой
Фантастика:
фэнтези
9.40
рейтинг книги
Возвращение Низвергнутого

Стрелок

Астахов Евгений Евгеньевич
5. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Стрелок

Восход. Солнцев. Книга I

Скабер Артемий
1. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга I

Последняя жена Синей Бороды

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Последняя жена Синей Бороды

Фатальная ошибка опера Федотова

Зайцева Мария
4. Не смей меня хотеть
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Фатальная ошибка опера Федотова

Леди Малиновой пустоши

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.20
рейтинг книги
Леди Малиновой пустоши