Величайшее Шоу на Земле: свидетельства эволюции.
Шрифт:
Можно сказать, что бесчисленными другими способами в дельфинах и китах вдоль и поперек записана их древняя история, как остатки римских дорог, вытянутых в идеально прямые проселочные дороги на карте Англии. У китов нет задних лап, но есть крошечные кости, похороненные глубоко в них, которые являются остатками тазового пояса и задних лап их давно ушедших ходячих предков. То же самое относится к сиренам или морским коровам (я уже упоминал о них несколько раз: ламантины, дюгони и 7 метровая морская корова Стеллера, истребленная человеком). Сирены очень отличаются от китов и дельфинов, но они всего лишь другая группа полностью морских млекопитающих, которые никогда не выходят на берег. Там где дельфины — быстрые, активные интеллектуальные хищники, ламантины и дюгони — медленные, мечтательные травоядные животные. В аквариуме ламантинов, который я посетил в западной Флориде, единственный раз я не возмущался против громкоговорителей, играющих музыку. Это была сонная музыка лагуны, и она казалась такой ленивой, соответствующей, что все было прощено. Ламантины и дюгони легко плавают в гидростатическом равновесии, не с помощью рыбьего плавательного пузыря (см. ниже), а посредством того, что оснащены тяжелыми костями в противовес естественной плавучести их жира. Их удельный вес поэтому
Дельфины и киты, дюгони и ламантины рожают детенышей как все млекопитающие. Живорождение не является специфическим только для млекопитающих. Многие рыбы живородящи, но они делают это совершенно по-другому (на самом деле имея восхитительный ряд очень различных способов, без сомнения, эволюционировавших независимо). Плацента дельфина явно принадлежит млекопитающему, как и обыкновение выкармливать детенышей молоком. Его мозг — также вне всякого сомнения мозг млекопитающего, и очень продвинутого млекопитающего. Кора головного мозга млекопитающих представляет собой слой из серого вещества, покрывающего наружную поверхность мозга. Частично мозговитость состоит в увеличении области этого слоя. Это может быть сделано за счет увеличения общего размера мозга, и черепа, его заключающего. Но есть минусы в наличии большого черепа. Во-первых, он делает роды тяжелее. В результате мозговитые млекопитающие умудряются увеличивать область слоя, оставаясь в рамках, установленных черепом, и они делают это, сложив весь этот слой в глубокие складки и борозды. Вот почему человеческий мозг так похож на морщинистый грецкий орех; и мозги дельфинов и китов — единственные конкуренты нам и обезьянам в морщинистости. Мозги рыбы не имеют складок вообще. На самом деле, у них нет коры головного мозга, и весь мозг является крошечным по сравнению с мозгом дельфина или человека. История Дельфина как млекопитающего глубоко впечатана в складчатую поверхность его мозга. Это часть его млекопитающей сущности, наряду с плацентой, молоком, четырехкамерным сердцем, нижней челюстью, имеющей только одну кость, теплокровностью, и многих других специфических особенностей млекопитающих.
Мозг человека (вверху), дельфина (в центре), озерной форели (без масштаба)
Теплокровные — это те, которых мы называем млекопитающими и птицами, а то что у них есть на самом деле, это способность поддерживать свою температуру постоянной, независимо от внешней температуры. Это хорошая идея, потому что все химические реакции в клетке могут быть оптимизированы для работы при определенной оптимальной температуре. «Холоднокровные» животные не обязательно холодны. Кровь ящерицы будет теплее, чем у млекопитающего, если оба окажутся на солнце в полдень в пустыне Сахара. У ящерицы более холодная кровь, чем у млекопитающего, если они находятся в снегу. У млекопитающего постоянная температура, и он должно упорно трудиться, чтобы сохранять ее постоянной, используя внутренние механизмы. Ящерицы используют внешние средства регулирования температуры своего тела, перемещаясь на солнце, когда они нуждаются в согреве, и в тень, когда им нужно охладиться. Млекопитающие регулируют свою температуру тела более точно, и дельфины не исключение. Еще раз, история млекопитающего написана повсюду в них, даже при том, что они вернулись к жизни в море, где большинство существ не поддерживает постоянную температуру.
Тела китов и морских коров изобилуют историческими реликтами, которые мы замечаем, потому что они живут в другой среде, чем их сухопутные предки. Подобный принцип относится к птицам, которые потеряли обыкновение и оборудование для полета. Не все птицы летают, но все птицы несут по крайней мере реликты аппарата для полета. Страусы и эму — быстрые бегуны, которые никогда не летают, но у них есть остатки крыльев как наследство их отдаленных летающих предков. Более того, страусиные остатки крыльев не полностью потеряли свою полезность. Хотя они слишком малы, чтобы с их помощью летать, они, похоже, выполняют некоторую роль в поддержании баланса и рулении при беге, и участвуют в социальных и сексуальных демонстрация. Крылья киви слишком малы, чтобы быть заметными за тонким слоем птичьих перьев, но остатки костей крыла имеются. Моа потеряли крылья полностью. В их родной Новой Зеландии, между прочим, есть более чем обычное количество нелетающих птиц, вероятно потому, что отсутствие млекопитающих оставило широко открытые ниши для заполнения любыми существами, которые бы смогли попасть туда полетом. Но эти летающие пионеры, прибыв на крыльях, позже потеряли их, когда заполняли приземные вакантные роли млекопитающих. Это, вероятно, не относится к моа, предки которого, по-видимому, были уже нелетающими прежде, чем большой южный континент Гондвана распался на фрагменты, среди которых была и Новая Зеландия, каждый несущий свой собственный груз животных Гондваны. Это наверняка относится к какапо, новозеландским нелетающим попугаям, чьи летучие предки, по-видимому, жили так недавно, что какапо до сих пор пытаются летать, хотя и не имеют оборудования, чтобы достичь успеха в этом. Словами бессмертного Дугласа Адамса из книги «Last Chance to See» [ «Последний шанс увидеть»]:
Это чрезвычайно толстая птица. Взрослый какапо весит около шести или семи фунтов, а его крылья годны лишь для того, чтобы немного помахать ими, когда ему кажется, что он может обо что-то споткнуться, но о полете не может быть и речи. К сожалению, он, похоже, не только забыл как летать, но и забыл, что он забыл как летать. Сильно взволнованный какапо иногда вскарабкивается на дерево и прыгает оттуда, после чего он летит как кирпич и обрушивается на землю неуклюжей грудой.
В то время как страусы, эму и нанду — великие бегуны, пингвины и галапагосские нелетающие бакланы — великие пловцы. Мне довелось поплавать с бескрылым бакланом в большом горном пруду на острове Изабела, и я был очарован, став очевидцем скорости и проворства, с которым он отыскивал одну подводную расщелину за другой, оставаясь под водой столь долгое время, что захватывало дыхание (у меня было преимущество трубки). В отличие от пингвинов, которые используют свои короткие
Многочисленные различные группы насекомых также потеряли крылья или очень их уменьшили. В отличие от просто бескрылых насекомых, таких как чешуйница, блохи и вши потеряли крылья, которые когда-то имели их предки. Самки непарного шелкопряда имеют слаборазвитые мускулы крыльев и не летают. Они не нуждаются в них, поскольку самцы летят к ним, привлекаемые химической приманкой, которую они могут обнаружить в поразительно низкой концентрации. Если бы самки перемещались так же как и самцы, система, вероятно, не работала бы, поскольку к тому времени, когда самец долетал бы вдоль медленно дрейфующего химического градиента, его источник уже переместился бы дальше!
В отличие от большинства насекомых, у которых четыре крыла, мухи, как предполагает их латинское имя Diptera [Двукрылые], имеют только два. Вторая пара крыльев уменьшилась до пары «жужжальцев». Они раскачиваются подобно очень высокоскоростным индийским булавам, которых они напоминают, функционирующих как крошечные гироскопы. Откуда мы знаем, что жужжальца произошли от крыльев предков? Есть несколько причин. Они занимают в точности то же место в третьем сегменте грудного отдела, что занимает летательное крыло во втором грудном сегменте (а у других насекомых и в третьем тоже). Они движутся по той же «восьмерке», как и крылья мух. У них та же эмбриология, что и у крыльев, и, хотя они крошечные, если на них тщательно посмотреть, особенно в период развития, можно увидеть, что они — недоразвитые крылья и явно модифицированы — если Вы не являетесь отрицателем эволюции — из их предковых крыльев. Как свидетельство той же истории, существуют мутантные плодовые мушки, так называемые гомеотические мутанты, чья эмбриология аномальна, которые выращивают не жужжальца, а вторую пару крыльев, как у пчел или любого другого вида насекомых.
На что могли быть похожи промежуточные стадии между крыльями и жужжальцами, и почему естественный отбор благоприятствовал промежуточным формам? Какова польза от половины жужжальца? Дж. У.С.Прингл, мой старый Оксфордский профессор, чье непривлекательное выражение лица и неуклюжее поведение принесло ему прозвище «Смеющийся Джон», главным образом отвественнен за раскрытие того, как работают жужжальца. Он указал, что в основании всех крыльев насекомых есть крошечные органы восприятия, распознающие скручивание и другие силы. Органы восприятия у основания жужжалец очень похожи — другая часть свидетельства, что жужжальца являются модифицированными крыльями. Задолго до того, как эволюционировали жужжальца, информация, текущая в нервную систему от органов восприятия в их основании, приспособила быстро снующие крылья действовать в качестве рудиментарных гироскопов. То, насколько любой летательный аппарат по природе неустойчив, должно компенсироваться сложными приборами, например гироскопами.
Весь вопрос эволюции устойчивых и неустойчивых летунов очень интересен. Посмотрите на этих двух птерозавров, вымерших летающих рептилий, современников динозавров. Любой аэроинженер мог бы сказать Вам, что рамфоринх, древний птерозавр на рисунке сверху, должно быть, был устойчивым летуном, из-за своего длинного хвоста с ракеткой для пинг-понга на конце. Рамфоринх не нуждался в сложном гироскопическом контроле, таком как у мух с их жужжальцами, потому что его хвост делал его устойчивым по своей сути. С другой стороны, как мог бы сказать тот же инженер, он не был очень маневренным. В любом летательном аппарате существует оптимальное соотношение между стабильностью и маневренностью. Великий Джон Мейнард Смит, работавший проектировщиком самолетов, прежде чем возвратиться в университет давать лекции по зоологии (на том основании, что самолеты были шумными и старомодными), указывал, что летающие животные могут перемещаться в течение эволюционного времени назад и вперед вдоль спектра своих оптимальных соотношений, иногда теряя врожденную стабильность в интересах увеличения маневренности, но платя за это увеличением вычислительных и измерительных мощностей — мощностью мозга. На нижнем рисунке на предыдущей странице представлена анхангера, поздний птеродактиль из Меловой эры, приблизительно на 60 миллионами лет более поздний, чем юрской рамфоринх. У анхангеры вообще почти не было хвоста, как у современной летучей мыши. Подобно летучей мыши, это, конечно, был неустойчивый летательный аппарат, зависящий от измерительного и вычислительного оборудования, чтобы осуществлять утонченный, постоянный контроль над его несущими поверхностями.
У анхангеры, конечно, не было жужжалец. Она должна была использовать другие органы чувств, чтобы предоставлять аналогичную информацию, вероятно, полукружные каналы внутреннего уха. Они действительно были очень большими у этих рассмотренных птерозавров — хотя, немного неутешительно для гипотезы Мейнарда Смита, они были большими и у рамфоринха, и у анхангеры. Но, возвращаясь к мухам, Прингл предполагает, что у четырехкрылых предков мух, вероятно, были длинные брюшки, что делало их устойчивыми. Все четыре крыла действовали как рудиментарные гироскопы. Затем, полагает он, предки мух начали двигаться вдоль диапазона стабильности, становясь более маневренными и менее устойчивыми, поскольку брюшко стало короче. Задние крылья начали изменяться больше в сторону гироскопической функции (которую они всегда выполняли, скромно, в качестве крыльев), становясь меньшими и более тяжелыми для своего размера, в то время как передние крылья увеличились, чтобы взять на себя больше функции полета. Существовал плавный континуум изменений по мере того, как передние крылья все больше брали на себя бремя авиации, тогда как задние крылья съеживались, перенимая функции авионики.