Великий квест. Гении и безумцы в поиске истоков жизни на Земле
Шрифт:
Кельвин тоже безнадежно ошибался, но, опять-таки, в этом не было его вины. Одним из эпохальных открытий того времени стала радиоактивность, о которой впервые услышали лишь в 1896 году. В недрах Земли покоится множество радиоактивных горных пород, которые излучают тепло, – но Кельвин об этом ничего не знал. Он считал, что и Солнце столь же молодо, ведь в то время никто не мог вообразить, что звезда может сиять многие миллионы лет. Все изменило открытие в 1930-е годы ядерного синтеза. Стало понятно, что Солнце является колоссальным источником энергии и может оказаться очень древним, – и такой же древней может оказаться наша Земля[33].
Открытие радиоактивности оказалось ключом к получению правильной оценки возраста Земли. Это весьма любопытная история, однако мы сразу перейдем к ее развязке. В начале XX века физики выяснили,
Дело в том, что атом не является единой частицей, как это считали на протяжении длительного времени. В действительности он “сделан” из более мелких частиц трех типов. Всякий атом имеет центральную часть – ядро, состоящее из специфического для него числа протонов и нейтронов. Это ядро окружено “облаком” электронов. Вся суть атома заключена как раз в его ядре, поскольку протоны и нейтроны в нем должны быть упакованы строго определенным образом. И если частиц того или иного сорта в нем слишком мало или слишком много, то такое ядро становится нестабильным.
Каждый из радиоактивных элементов распадается с вполне определенной скоростью. Представьте, что у вас есть слиток урана-238 (самой распространенной разновидности урана) и что в этом слитке ровно 1000 атомов. Потребуется 4468 миллионов лет для того, чтобы половина их (то есть 500) распалась с образованием атомов свинца. Далее потребуется еще 4468 миллионов лет для распада половины оставшегося урана (250 атомов) – и так вновь и вновь вплоть до момента, когда урана уже не останется и слиток окажется полностью свинцовым. Этот период в 4468 миллионов лет, за который содержание урана-238 убывает вдвое, называют его периодом полураспада (англ. half-life). Поскольку каждый радиоактивный элемент имеет собственный период полураспада (установленный в эксперименте и постоянный), эта характеристика может быть использована для датировки горных пород (то есть оценки их возраста). Первым прошел по этому пути американский радиохимик Бертрам Болтвуд, измеривший в 1907 году соотношение урана и свинца в горных породах и заключивший, что им по меньшей мере 400 миллионов лет[34].
Однако вскоре стало понятно, что в действительности проблема гораздо сложнее. Оказалось, что уран – не единственный радиоактивный элемент, который распадается с образованием свинца. К тому же существует несколько разновидностей самого урана, и все они распадаются с разной скоростью.
Проблему, причем практически единолично, решил “тихий и непритязательный” Артур Холмс[35]. Свою первую статью он опубликовал в 1911-м, всего через два года после окончания университета. В ней Холмс описал успешную датировку горной породы девонского периода – тех времен, когда широко распространились первые наземные растения, а океан заполонили первые рыбы. Холмс сделал вывод, что его образцам 370 миллионов лет, – и это число соответствует девонскому периоду в современном понимании[36].
Два года спустя Холмс выпустил свою первую книгу, “Возраст Земли” (The Age of the Earth), – ее написанию не помешало даже то, что в это самое время автор принимал участие в геологоразведочных работах в Мозамбике. (Путешествие, кстати, едва не кончилось для Холмса трагически из-за заражения малярией.) В книге приведены доказательства того, что радиоактивный распад может служить надежным способом для установления возраста Земли, и – на основании датированных Холмсом ранее пород – сделано предположение, что нашей планете 1 миллиард 600 миллионов лет[37].
На протяжении следующих двух десятков лет Холмс продолжал отодвигать результаты своего радиометрического датирования в прошлое. (Две новые редакции его книги вышли в 1927 и 1937 годах.) Затем им была обнаружена порода возрастом 3 миллиарда лет – на этой цифре он настаивал в 1946 году[38].
В этом месте история слегка запутывается, поскольку Холмс, много лет использовавший радиометрический анализ, внезапно узнал, что его вовсю применяют и другие исследователи. Методики датировки были усовершенствованы, их даже начали использовать для изучения метеоритов – которые, как предполагалось, образовались одновременно с Землей, но не прошли через выветривание и прочие передряги, случившиеся на нашей планете.
Поворотным
И по большому счету эта цифра уже не изменялась[42]. Она была совсем немного подкорректирована в меньшую сторону (до 4,54 миллиарда лет), и если ее и ждут другие изменения, то разве что незначительные. Наша планета немногим старше 4,5 миллиарда лет. До этого вокруг Солнца вращались только всякие булыжники и пыль. А после уже был рожден новый мир.
Значение 4,5 миллиарда лет является верхним пределом и для возраста жизни на Земле. Крайне маловероятно, что жизнь возникла раньше; впрочем, если бы она и возникла, то вряд ли бы сохранилась в ходе последующих событий. Предполагают, что вскоре после своего образования Земля столкнулась с объектом, по размеру близким к Марсу[43]. Вся поверхность нашей планеты расплавилась, а огромные объемы горных пород были выброшены на орбиту – и в конечном счете стали Луной. Тому, кто возьмется говорить о существовании жизни ранее 4,5 миллиарда лет назад, придется объяснять, как ей удалось сохраниться в условиях апокалипсиса. Короче говоря, куда проще считать, что все живое появилось позже.
Но когда именно позже? Палеонтологи продолжают отодвигать момент зарождения жизни дальше и дальше в прошлое, находя все более древние окаменелости и прочие следы жизни, так что интересующий нас временной отрезок постепенно сокращается.
Известная в XIX веке палеонтологическая летопись охватывала только кембрийский период, начавшийся 541 миллион лет назад. Кембрийские породы сохранили богатое разнообразие остатков живых организмов, включая червей, губок и внешне похожих на мокриц трилобитов. Однако многие современные группы живого в них отсутствуют: нет следов ни кембрийских млекопитающих, ни птиц или насекомых. Вся известная нам жизнь того времени обитала в морях.
Когда палеонтологи впервые принялись изучать более древние породы, то им не удалось обнаружить буквально ничего. Казалось, докембрийских окаменелостей попросту не существует. Это стало увесистым камнем в огород Дарвина, доказывавшим, как известно, что биологическое разнообразие определяется ходом эволюции. Тут же получалось, будто более поздние необычайно разнообразные морские экосистемы возникли словно бы на пустом месте.
Все изменилось в 1957 году, когда летопись окаменелостей продвинулась еще дальше вглубь веков. Школьник Роджер Мэйсон и его друзья отправились в поход к скалистым холмам Чарнвудского леса (английское графство Лестершир). Мэйсон нашел там окаменелость, напоминающую папоротник. Мальчик сделал ее карандашную “копию”, приложив к ней бумагу и заштриховав неровности, а затем показал листок своему отцу. Тот отнес рисунок геологу Тревору Форду, который в следующем году опубликовал описание этой находки[44], относившейся, безусловно, к докембрийскому периоду. Вообще-то, подобные отпечатки древних организмов отыскивались и в предыдущие два десятилетия, но их ошибочно относили к кембрию[45]. Данную же окаменелость назвали чарния Мэйсона (Charnia masoni) – в честь того самого леса и юного первооткрывателя. Рассказанная мною история была бы совершенно идиллической, если бы не то обстоятельство, что годом ранее такую чарнию обнаружила школьница Тина Негус… которой, однако, никто не поверил. Вот уж воистину сексизм во всей своей красе!