Машинное обучение играет все большую роль в военном деле. Обучающиеся алгоритмы могут развеять «туман войны»: анализ изображений, полученных при рекогносцировке, обработка рапортов после боя, составление картины положения для командира. Обучение усилит интеллект боевых роботов,
поможет им ориентироваться, приспосабливаться к местности, отличать вражескую технику от гражданской, правильно целиться. Робот AlphaDog, разработанный Агентством по перспективным оборонным проектам, может нести солдату снаряжение. C помощью обучающихся алгоритмов дроны смогут летать автономно. Пока они отчасти контролируются людьми, но все идет к тому, что один пилот станет управлять все большим и большим роем летательных аппаратов. В армии будущего обучающихся алгоритмов будет значительно больше, чем солдат, а это спасет множество жизней.
Куда мы идем?
Тенденции в мире технологий приходят и уходят, но в машинном обучении необычно то, что, несмотря на все трудности, оно продолжает развиваться. Первым крупным всплеском популярности стало прогнозирование взлетов и падений на рынках ценных бумаг, появившееся в конце 1980-х годов. Следующей волной стал анализ корпоративных баз данных, который начал довольно активно внедряться в середине 1990-х годов, а также такие области, как прямой маркетинг, управление работой с клиентами, оценка кредитоспособности и выявление мошенничества. Затем пришел черед интернета и электронной коммерции, где автоматизированная
персонализация быстро стала нормой. Когда лопнувший пузырь доткомов нанес удар по этому бизнесу, приобрело популярность использование машинного обучения для поиска в интернете и размещения рекламы. События 11 сентября бросили машинное обучение на передовую войны с террором. Web 2.0 принес с собой целый спектр новых применений – от анализа социальных сетей до определения, что блогеры пишут о продукции данной компании. Параллельно ученые всех мастей все чаще обращались к масштабному моделированию. В первых рядах шли молекулярные биологи и астрономы. Едва наметился кризис на рынке недвижимости, как таланты стали перетекать с Уолл-стрит в Кремниевую долину. На 2011 год пришелся пик популярности мема [18] о больших данных, и машинное обучение оказалось прямо в центре глобального экономического кризиса. Сегодня, кажется, сложно найти область приложения человеческих усилий, не затронутую машинным обучением, включая неочевидные на первый взгляд сферы, например музыку, спорт и дегустацию вин.
18
Единица культурной информации. Мемом может считаться любая идея, символ, манера или образ действия, осознанно или неосознанно передаваемые от человека к человеку посредством речи, письма, видео, ритуалов, жестов и так далее.