Веселые научные опыты и эксперименты
Шрифт:
Заглушив (заткнув) выходную трубку манометра и присоединив ко входной трубке зонд (рис. 72), вы сможете более точно, чем с помощью мембраны, измерять изменение скорости, например, ветра. Мембранный приемник давления из-за своих габаритов создает более значительные искажения в движущихся массах потока, чем закругленный зонд.
Рис. 71
Рис. 72
Сила
Оборудование и принадлежности:
• лист плотной бумаги;
• клей ПВА;
• в качестве наклонной поверхности – крышка от картонной коробки или сама коробка, например от плоского монитора.
Для обнаружения силы Магнуса (поперечной силы, действующей на тело, вращающееся в набегающем на него потоке жидкости или газа; была открыта немецким ученым Г. Г. Магнусом в 1852 г.) можно проделать несложный эксперимент.
Склейте из листа плотной бумаги рулон и скатите его с наклонной обрывающейся поверхности (рис. 73). Естественно, скатываясь, рулон приобретет некоторую скорость. Далее, казалось бы, рулон должен двигаться (падать) по параболической траектории А, слегка искажаемой сопротивлением воздуха. Так все и происходило бы, если бы рулон падал без скольжения или скатывался бы тяжелый предмет. Как ни странно, но легкий рулон будет упрямо залетать под поверхность скатывания по траектории В, существенно отклоняясь от предполагаемой параболической траектории.
Рис. 73
Объясняется такое явление следующим образом: вращение рулона нарушает симметричность обтекания воздуха за счет эффекта прилипания. С одной стороны бумажного цилиндра скорость воздушного потока больше, значит, там давление понижается и возникает боковая подъемная сила, называемая силой Магнуса.
В футболе одним из коварных для вратаря ударов считается так называемый «сухой лист». Похожий подрезанный удар – «спин» (вращающийся, крученый) применяют в теннисе и других играх с мячом. При этом ударе мяч в полете быстро вращается, и его траектория становится гораздо сложнее в сравнении с траекторией мяча после обычного удара. Эти явления возникают в результате действия все той же силы Магнуса. Очень похожее на эффект Магнуса явление наблюдается при возникновении подъемной силы у крыла самолета.
Чудеса в стакане чая
Оборудование и принадлежности:
• стакан чая;
• диск здоровья или два блюдца.
Возьмите стеклянный стакан и заварите в нем чай, но не в пакетике, а листовой. Обратите внимание, что при помешивании ложечкой в стакане форма поверхности воды представляет собой параболоид вращения. При этом на дне стакана происходят весьма занимательные и, можно сказать, парадоксальные явления. Намокшие чаинки имеют большую плотность, чем вода, в противном случае они бы не опускались на дно.
Соответственно, при вращении на них действует большая, чем на воду, сила инерции, и, казалось бы, она должна относить их подальше от центра вращения, но вопреки этому чаинки собираются именно в центре (рис. 74).
Слегка трансформировав опыт, можно сильно изменить результат. Поставьте стакан с чаем на свободно вращающуюся поверхность (рис. 75), например на диск здоровья или на два блюдца, как описывалось
Рис. 74
Жидкость (в данном случае вода) в силу своей вязкости прилипает к поверхности твердых тел (в данном случае – к стенкам и дну стакана). Когда стакан покоится, элементы жидкости, которые непосредственно соприкасаются со стаканом, тоже покоятся, а элементы, соседние с ними, из-за вязкости тормозятся – скорость вблизи стенок плавно возрастает от нуля до скорости основного потока. Поэтому у стенок стакана поверхность жидкости теряет свою параболическую форму. Область, где стенки стакана замедляют движение воды и ее поверхность отклоняется от формы параболоида, относительно невелика.
Таким же образом и неподвижное дно стакана тормозит жидкость. Давление жидкости возрастает по мере удаления от оси вращения. Сила давления на элемент жидкости со стороны оси вращения меньше силы давления с противоположной стороны. Эта разность является причиной центростремительного ускорения элемента жидкости, из-за чего он движется по круговой траектории. Но когда элемент жидкости приближается ко дну стакана, скорость из-за эффекта прилипания уменьшается, а разность давлений остается прежней. Центробежная сила ее не компенсирует, и поэтому жидкость течет от большего давления к меньшему. Такое течение и увлекает за собой чаинки на дно, собирая их в центре.
Рис. 75
Исследование воздушных пузырьков в жидкости
Оборудование и принадлежности:
• жидкостный манометр;
• резиновая груша, например аптечная спринцовка;
• стеклянный стакан с гладкими стенками.
На первый взгляд, процесс выдувания воздушных пузырьков в воде кажется настолько простым, что даже не заслуживает никакого внимания. На самом деле природа этого процесса весьма необычна и увлекательна. На рис. 76 изображен прибор для исследования физических процессов, происходящих во время образования воздушных пузырьков в жидкости. Для проведения данных опытов вам понадобиться соединить жидкостный манометр с наконечником резиновой груши. Проще всего это осуществить с помощью иглы от капельной системы.
Для удобства проведения эксперимента расположите установку на столе. Наполните чистый стакан или другую прозрачную емкость водой и погрузите наконечник груши в воду на небольшую глубину. Нажимая на грушу, вы создадите внутри трубки повышенное давление, регистрируемое жидкостным манометром. По мере увеличения давления в трубке радиус выдуваемого пузырька все уменьшается (рис. 77, а – в). Продолжая плавно увеличивать нажим на грушу, вы дойдете до такого положения, когда радиус пузырька начнет увеличиваться (рис. 77, г), а манометр при этом зафиксирует уменьшение давления. Этот опыт показывает, что изогнутость поверхности жидкости связана с добавочным давлением по ту сторону поверхности, куда она обращена своей вогнутостью, и что добавочное давление тем больше, чем меньше радиус кривизны поверхности.