Чтение онлайн

на главную

Жанры

Веселые научные опыты и эксперименты
Шрифт:

Рис. 66

Теперь повторите все те же действия, но со стаканом, у которого стенки просто чистые, или с чистой сухой стеклянной пластинкой. Вы увидите совершенно противоположный результат (рис. 67, а, б): вода как бы тянется вверх по стенкам стакана, а в таком узком сосуде, как пробирка, поверхность воды приобретает вогнутую форму – ее еще называют мениском (от греческого «менискос» – полумесяц).

Рис. 67

Каждая жидкость, соприкасаясь с тем или иным твердым материалом, проявляет в определенных условиях смачиваемость или несмачиваемость. Можете поэкспериментировать с различными жидкостями. Для этого достаточно на плоскую горизонтальную поверхность капнуть жидкостью и понаблюдать, как капля распределится на поверхности. Если капля свободно растекается – значит, смачивает, если же, наоборот, держится плотным шариком наподобие ртути – значит, не смачивает.

Еще один простой способ продемонстрировать свойства воды смачивать стеклянные поверхности – это налить воду в бутылку с узким горлышком без применения воронки. Возьмите бутылку, стакан воды и стеклянную палочку. Введите один конец палочки в бутылку, а с другого конца аккуратно лейте на нее воду (рис. 68). Вода будет стекать, не прокапывая мимо.

Рис. 68

Кумулятивный эффект

Оборудование и принадлежности:

• стеклянная пробирка.

На несложном опыте можно воспроизвести явление кумуляции. Для этого вам понадобится стеклянная пробирка с водой и жесткая поверхность. Что же произойдет, если с некоторой высоты уронить на стол вертикально расположенную пробирку с водой? Поскольку в ходе эксперимента высока вероятность того, что пробирка может разбиться, необходимо принять меры предосторожности. Чтобы эксперимент прошел удачно, роняйте пробирку с небольшой высоты (1–3 см).

В предыдущем опыте рассмотрено, как формируется поверхность воды в пробирке – силы поверхностного натяжения формируют мениск. В момент удара о стол к силе тяжести, действующей на воду, добавится инерция движения жидкости, и давление на стенки пробирки существенно возрастет, то есть возникнет гидроудар. Силы поверхностного натяжения не смогут препятствовать стремительному выпрямлению поверхности воды, и в результате возникшего течения жидкость двинется от краев мениска к нижней его части на оси симметрии пробирки. Как следствие, вверх устремится тоненькая струйка воды (рис. 69). Высота, на которую поднимется эта струйка, будет существенно больше той, с которой вы уронили пробирку. Если, рискуя ее разбить, уронить пробирку с высоты 10–15 см, струйка воды вполне может достичь потолка.

Подобное явление называется кумуляцией (от лат. cumulatio – скопление), или кумулятивным эффектом.

В целях безопасности стеклянную пробирку можно заменить подходящим сосудом из пластика или металла.

Рис. 69

Трубка Пито

Оборудование и принадлежности:

• жидкостный манометр;

• вентилятор;

• пластиковая бутылка;

• воздушный шарик;

• скотч.

Изменение давления, вносимое препятствием, можно объяснить на примере действия паруса. При равномерном ветре степень сжатия воздуха в соседних участках одна и та же, поэтому можно было бы предположить, что силы давления, действующие по обе стороны паруса, будут одинаковы, а следовательно, ветер не должен двигать судно. Но в действительности именно парус на протяжении длительного периода служил основным движителем на воде, поскольку парус существенно изменяет движение воздуха. Ударяясь о препятствие (парус), воздух сжимается, подобно тому, как сжимается мяч, ударившийся о стенку; с подветренной стороны слои воздуха, прилегающие к парусу, сжимаются сильнее, чем остальной воздух, то есть давление повышается. С другой стороны паруса воздух, обтекая парус, оказывается менее сжатым, то есть давление в этой зоне меньше. Таким образом, за счет разницы давлений по разным сторонам паруса возникает равнодействующая сила, приложенная к парусу, которая движет судно.

Как парус меняет скорость потока воздуха, так и манометр, погруженный в текущую жидкость, изменяет скорость потока. После незначительной доработки жидкостного манометра можно создать интереснейший прибор для измерения скорости потока жидкости или газа. Для этого из маленькой пластиковой бутылочки и фрагмента воздушного шарика изготовьте приемник давления – раструб с мембраной (рис. 70). Для большей эластичности и, соответственно, чувствительности шарик желательно несколько раз надуть и спустить, в результате резина растянется, станет тоньше и податливее. Вырежьте из шарика достаточный кусок и натяните его на раструб, как показано на рисунке. Чтобы материал мембраны не соскальзывал, закрепите его скотчем. Готовый приемник давления соедините с приемной трубкой манометра, вставив в пробку раструба иголку от капельницы.

Итак, прибор готов, пора приступать к экспериментам. Если установить мембрану манометра навстречу потоку воздуха (для создания воздушного потока можно использовать домашний вентилятор, а для создания потока жидкости – шланг, присоединенный к водопроводному крану), манометр покажет существенное повышение давления. При повороте мембраны на 90°, то есть вдоль потока, манометр покажет несколько меньшее повышение давления; а при повороте мембраны на 180° от направления потока манометр отразит еще меньшие показания. Меняя интенсивность (поворотом регулятора оборотов вентилятора или крана), то есть скорость потока, вы заметите, что показания манометра будут пропорциональны скорости движения потока.

Рис. 70

В авиации для измерения больших скоростей воздушного потока (скорости движения самолета относительно воздушной среды) применяют несколько иной, но работающий на том же принципе прибор – трубку Пито. Для создания такого прибора вам необходимо изготовить приемник давления особой формы (рис. 71) – трубку с закругленным закрытым концом и отверстиями сбоку. Материалом для изготовления такого элемента может послужить дерево или пластик. Струи воздушного потока, проходя мимо отверстий, сохраняют свою скорость практически неизменной, и в колене манометра, соединенного с такой трубкой, создается давление. Такая трубка называется зондом.

Популярные книги

Вперед в прошлое 2

Ратманов Денис
2. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 2

Измена. Ты меня не найдешь

Леманн Анастасия
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Ты меня не найдешь

Неудержимый. Книга XIX

Боярский Андрей
19. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIX

На границе империй. Том 10. Часть 2

INDIGO
Вселенная EVE Online
Фантастика:
космическая фантастика
5.00
рейтинг книги
На границе империй. Том 10. Часть 2

Как сбежать от дракона и открыть свое дело

Ардин Ева
Фантастика:
юмористическая фантастика
5.83
рейтинг книги
Как сбежать от дракона и открыть свое дело

Ваше Сиятельство

Моури Эрли
1. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Ваше Сиятельство

Невеста

Вудворт Франциска
Любовные романы:
любовно-фантастические романы
эро литература
8.54
рейтинг книги
Невеста

Академия

Кондакова Анна
2. Клан Волка
Фантастика:
боевая фантастика
5.40
рейтинг книги
Академия

Последний попаданец 3

Зубов Константин
3. Последний попаданец
Фантастика:
фэнтези
юмористическое фэнтези
рпг
5.00
рейтинг книги
Последний попаданец 3

Защитник

Астахов Евгений Евгеньевич
7. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Защитник

Релокант

Ascold Flow
1. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант

Уязвимость

Рам Янка
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Уязвимость

Совершенный: Призрак

Vector
2. Совершенный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Совершенный: Призрак

Под маской, или Страшилка в академии магии

Цвик Катерина Александровна
Фантастика:
юмористическая фантастика
7.78
рейтинг книги
Под маской, или Страшилка в академии магии