«Викинги» на Марсе
Шрифт:
В течение августа 1976 г. при помощи масс-спектрометра, установленного на СА «Викинг-1», продолжались измерения относительного содержания изотопов аргона, углерода, кислорода и азота, а также предприняты поиски других малых компонентов, особенно благородных газов [18]. Производились анализы как непосредственно взятых, так и обогащенных (путем удаления СО и СО2) проб атмосферы, что позволяло повысить относительную концентрацию малых компонентов в 8,5 раза.
В
Измерения на СА «Викинг-2» с обогащением образцов воздуха в 10 раз позволили определить содержание криптона и ксенона, выявив, что криптон присутствует в б'oльших количествах, чем ксенон [92]. Относительное содержание различных изотопов криптона близко соответствует земным значениям, но отношение концентрации ксенона-129 и ксенона-132 оказалось более высоким, чем в земной атмосфере.
Полученные результаты позволяют считать мало вероятным, что Марс мог иметь в прошлом массивную первоначальную атмосферу, которая была затем постепенно «сдута» солнечным ветром, так как в противном случае отношение концентраций 36Аr и криптона должно быть гораздо меньшим, чем в земной атмосфере, поскольку «сдувание» аргона более эффективно, чем криптона. Обнаруженная в атмосфере Марса низкая концентрация аргона свидетельствует об одной из следующих возможностей: 1) на Марсе в период его формирования имело место пониженное содержание летучих компонентов (это, однако, мало вероятно, ввиду близости планеты к Солнцу); 2) значительная часть первоначальной атмосферы планеты подвергалась «сдуванию» солнечным ветром, в процессе которого происходило изменение состава атмосферы; 3) на Марсе не было такой интенсивной дегазации твердой оболочки планеты, как на Земле. Последняя возможность является наиболее вероятной.
Важное значение имеет факт преобладания криптона над ксеноном в марсианской атмосфере (аналогичная ситуация наблюдается в земной атмосфере), тогда как обратное справедливо для состава протопланетной газовой компоненты обычных или карбонатных хондритов. В связи с этим можно предположить, что на Марсе происходил подобный земному процесс преимущественной адсорбции ксенона, выделившегося при дегазации осадочными породами. Возможно, что подобный процесс имел место на Марсе в периоды флювиальной эрозии. Альтернативное (или дополнительное) предположение состоит в том, что ксенон был поглощен реголитом.
Низкая концентрация аргона свидетельствует о необходимости внести поправки в оценки концентрации других летучих компонентов, основанные на предположении о высоком содержании аргона. Однако малое по сравнению с земным отношение концентрации изотопов аргона указывает, по-видимому, на большую сложность процессов дегазации на Марсе, чем это предполагается по аналогии с Землей.
Можно считать, что Марс и Земля имеют, в целом, сходный состав и поэтому продукция газов осуществляется в одинаковых пропорциях, но дегазация и выветривание были на Марсе гораздо менее полными. Значительная часть летучих компонентов могла быть захвачена слоями вечной мерзлоты (Н2О), полярными шапками (Н2О, СО2), химически связана в грунте (нитраты, окислы, карбонаты) или диссипировала. Если принять такую гипотезу, то из нее вытекает, что масса марсианской атмосферы в прошлом не могла превышать современную более, чем в 10 раз, т. е. давление у поверхности не превосходило 100 мбар. Существование огромных количеств «погребенных» СО2 и Н2О допускает, однако, возможность циклических или эпизодических вариаций климата, которые могли обусловить появление флювиальных структур рельефа.
7. Структурные параметры
Измерения на участке входа СА в марсианскую атмосферу позволили получить сведения о вертикальных профилях структурных параметров [98]. Вход СА «Викинг-2» (САВ-2) в атмосферу Марса произошел 3 сентября 1976 г. около 15 ч 49 м по тихоокеанскому дневному времени, что соответствует местному утру. Структура марсианской атмосферы утром на высотах до 100 км, определенная по данным акселерометрических (на высотах более 25 км) и прямых (парашютный спуск) измерений во время входа СА в атмосферу, характеризуется наличием почти изотермического слоя 1,5–4 км вблизи поверхности планеты с вертикальным градиентом температуры не более 1,3 К/км на высотах, превосходящих 2,5 км. Вертикальный градиент температуры в слое 5–19 км ниже адиабатического и равен 1,8 К/км, а в вышележащей толще атмосферы наблюдается волнообразный ход температуры.
Различие по сравнению с данными САВ-1, согласно которым вертикальный градиент температуры составляет 3,7 К/км, обусловлено влиянием суточного хода (данные САВ-1 относятся к послеполуденному времени). Атмосферное давление у поверхности оказалось примерно на 10% выше (7,75 мбар) зарегистрированного в тот же момент времени в точке посадки СА «Викинг-1» (6,98 мбар). Это определяется тем фактом, что САВ-2 совершил посадку в точке, находящейся на уровне, который на 2,7 км ниже отсчетного уровня марсианского эллипсоида (уровня 6,1 мбар поверхности) и примерно на 0,96–1,20 км ниже уровня САВ-1. Плотность воздуха у поверхности равна 0,0180 кг/м3. Полученный вертикальный профиль температуры на высотах до 100 км согласуется (по крайней мере, качественно) с данными, найденными ранее на основе использования модели тепловых приливов.
Для изменения температуры с высотой характерен волнообразный характер при амплитуде волны, возрастающей примерно до 25 К на высоте 90 км. Вертикальные длины волн (расстояния между экстремумами) варьируют в пределах 17–23 км (теоретические расчеты приводят к значениям, равным 22–24 км). По-видимому, подобные волны являются следствием слоистой структуры вертикальных осцилляции и связаны с нагреванием и охлаждением, обусловленными сжатием и расширением (требуемый коэффициент сжатия на высотах меньше 80 км должен варьировать в пределах 0,80–1,26). Последние определяются влиянием суточного хода температуры поверхности планеты.
Как это необходимо для распространения гравитационных волн, атмосфера устойчива к конвекции, за исключением, возможно, некоторых участков планеты. В обеих точках посадки СА температура атмосферы везде существенно выше уровня конденсации углекислого газа, что исключает возможность формирования дымки из сухого льда летом в северном полушарии по крайней мере до 50° с. ш. Следует, таким образом, считать, что наблюдаемый на этих широтах приповерхностный туман состоит из конденсата водяного пара.
По данным масс-спектрометрических измерений плотности углекислого газа во время снижения СА «Викинг-1, -2» (САВ-1 и САВ-2) в работе [75] рассчитаны вертикальные профили температуры на высотах 120–200 км. Расчеты сделаны на основе барометрической формулы с применением итерационной схемы, предусматривающей послойное определение температуры, начиная с уровня верхней границы, где атмосфера первоначально предполагается изотермической в пределах интервала высот, охватываемого первыми двумя точками измерений. Вертикальные профили температуры восстановлены независимо по ионным пикам, соответствующим массовым числам 44, 22 и 12, что позволяет оценить точность определения температуры.