Чтение онлайн

на главную

Жанры

Виртуальная история: альтернативы и предположения
Шрифт:

Однако неопределенность пережила Эйнштейна и имеет не менее обескураживающие следствия для исторического детерминизма. По аналогии историки не должны забывать о собственном “принципе неопределенности”, который гласит, что любое наблюдение исторического свидетельства неизбежно искажает его значимость самим фактом его выбора через призму ретроспективы.

Влияние на историю оказала и другая важная научная концепция – так называемый “антропный” принцип, который в “строгом” смысле гласит, что “существует множество различных вселенных или областей единой вселенной и для каждой из них характерна собственная начальная конфигурация, а возможно, и собственный набор законов науки… [однако] только в нескольких вселенных, похожих на нашу, появляется разумная жизнь” [161] . Само собой, здесь сразу возникают очевидные проблемы: непонятно, насколько значимыми считать другие “истории”, в которых нас нет. Согласно Хокингу, “наша вселенная представляет собой не просто один из возможных вариантов истории, а один из наиболее вероятных… существует определенное семейство историй, которые гораздо вероятнее остальных” [162] . Эту идею о существовании множества вселенных (и измерений) развил физик Митио Каку. На мой взгляд, историку не стоит буквально воспринимать ряд наиболее фантастических гипотез Каку. Учитывая количество необходимой энергии, кажется сомнительным, что путешествия во времени сквозь “трансверсабельные кротовые норы” в пространстве-времени можно назвать хотя бы “теоретически” возможными. (Помимо всего прочего, как часто говорится, если бы путешествия во времени были возможны, к нам давно бы хлынул поток “туристов” из будущего – но только тех, которые не решились

отправиться в более давние времена, чтобы предотвратить убийство Линкольна или задушить в колыбели новорожденного Адольфа Гитлера.) [163] Тем не менее идея о бесконечном множестве вселенных может послужить важной эвристической цели. Мысль о том – как выразился один физик, – что существуют другие миры, где на кончике знаменитого носа Клеопатры красовалась омерзительная бородавка, весьма нетрадиционна. Однако она напоминает нам о неопределенной природе прошлого.

161

Hawking S. A Brief History of Time. London, 1988. Pp. 123f.

162

Ibid. P. 137.

163

Kaku M. Hyperspace: A Scientific Odyssey through the 10th Dimension. Oxford, 1995. Pp. 234ff. Само собой, воспоминания об успешном путешествии во времени гипотетически могут стереться в процессе перемещения.

В последние годы подобным образом отошли от детерминизма и биологические науки. Хотя в работе Ричарда Докинза, к примеру, и слышатся детерминистические нотки, ведь он называет отдельные организмы, включая людей, просто “машинами выживания, сформированными недолговечными альянсами долговечных генов”, в “Эгоистичном гене” он явно говорит, что гены “определяют поведение только в статистическом смысле… [они] не контролируют свои творения” [164] . Его дарвиновская, по сути, теория эволюции “слепа к будущему” – у природы нет заранее составленного плана. Вся суть эволюции заключается в том, что молекулы-репликаторы (такие, как ДНК) совершают и воспроизводят ошибки, так что “на первый взгляд банальные и незначительные изменения могут оказывать существенное воздействие на эволюцию”. “Гены не обладают прозорливостью, они не планируют на будущее”. Докинза можно назвать детерминистом лишь в одном отношении – он отрицает влияние “неудач” на процесс естественного отбора: “Удача по определению случайна, поэтому ген, который постоянно проигрывает, нельзя считать неудачливым – это просто плохой ген”. Таким образом, те организмы, которые проходят огонь, воду и медные трубы, лучше всего для этого подготовлены: “Генам приходится выполнять аналогичную прогнозированию задачу… [Однако] прогнозирование в сложном мире – рискованное дело. Каждое решение машины выживания сопряжено с риском… В результате те индивиды, гены которых сформировали их мозг таким образом, чтобы они правильно выбирали стратегию, с большей вероятностью выживают, а следовательно, и передают по наследству те же самые гены. Отсюда и реакция на базовые стимулы боли и наслаждения, и способность запоминать ошибки, моделировать варианты и взаимодействовать с другими «машинами выживания»” [165] .

164

Dawkins R. The Selfish Gene. 2nd ed Oxford, 1989. Pp. 267, 271.

165

Ibid. Pp. 4, 8, 15ff., 24f., 38f., 45. Отсюда и наш инстинкт защищать жизнь других машин выживания, пропорциональный количеству генов, которые они делят с нами, их возрасту и будущей способности к деторождению в сравнении с нашей. В модели Докинза даже контроль за рождаемостью представляет собой способ максимизации количества выживающих потомков, а следовательно, предоставления родительским генам наилучшего шанса на выживание.

Впрочем, другие эволюционисты критикуют эту нить рассуждений, поскольку она подразумевает по-прежнему детерминистическое следствие о том, что победа достается сильному отдельному организму (или “мему”, или “фенотипу” – то есть другим формам репликаторов Докинза). Как показывает в своей “Удивительной жизни” Стивен Джей Гулд, определенные случайные события – крупные природные катастрофы, подобные той, что, судя по всему, произошла после так называемого “Кембрийского взрыва”, – нарушают ход процесса естественного отбора [166] . Коренным образом изменяя многолетние экологические условия, они в одночасье обесценивают признаки, которые на протяжении тысяч лет формировались в ответ на эти условия. Выжившие выживают не потому, что гены сумели разработать и создать превосходные “машины выживания”, а часто потому, что их рудиментарные признаки вдруг оказываются козырем. Иначе говоря, в доисторическую эпоху от роли случая никуда не деться. Гулд показывает, что разнообразие анатомических форм, обнаруженное в Бёрджесских сланцах в Британской Колумбии, возраст которых оценивается в 530 миллионов лет, лишило актуальности традиционные цепочки эволюционной теории. Это не дарвиновский закон естественного отбора определил, какие из организмов, сохранившихся в Бёрджесских сланцах, пережили великий кризис, разразившийся на планете 225 миллионов лет назад. Выжившие организмы стали просто счастливыми победителями катастрофической “лотереи”. Если бы землю постиг другой катаклизм, развитие жизни пошло бы другим, непредсказуемым путем [167] .

166

Gould S. J. Wonderful Life: The Burgess Shale and the Nature of History. London, 1989. Особенно pp. 47f.

167

То же на самом деле заметил и Бьюри: “Судя по всему, появление различных ботанических и зоологических видов, которые существуют и существовали в прошлом, зависело от воли случая. Ничто не делало существование дуба или гиппопотама неизбежным. Нельзя также доказать, что был хоть какой-то фактор, который сделал неизбежным появление anthropos. На далеком пороге истории мы словно бы находим первобытную случайность – происхождение человека”, см.: Bury J. B. Cleopatra’s Nose // Bury J. B. Selected Essays / Ed. by H. W. V. Temperley. Cambridge, 1930. Pp p. 68.

И снова можно глумиться над описанными Гулдом альтернативными мирами, населенными “травоядными морскими организмами” и “морскими хищниками с хватательными передними конечностями и челюстями-щипцами”, но не Homo sapiens (“Если бы в море царили маленькие приапулиды, я сомневаюсь, что австралопитек вообще однажды прошелся бы на двух ногах по саваннам Африки”) [168] . Однако замечания Гулда о роли случая в истории далеко не абсурдны. В отсутствие научной процедуры верификации через повторение историк эволюции может лишь формировать нарратив – как выразился Гулд, проигрывать заново воображаемую пленку, – а затем выдвигать предположения относительно того, что случилось бы, если бы другими были начальные условия или какое-либо из событий последовательности. Это применимо не только к неожиданному триумфу полихетов над приапулидами после бёрджесского периода или триумфу млекопитающих над гигантскими птицами в эоцене, но и к той краткой восемнадцатитысячной доле истории планеты, в течение которой ее населял человек.

168

Ibid. Pp. 238f., 309–321. Неубедительные попытки восстановления детерминизма в ответ на работу Гулда можно см. в работе: Lewin R. Complexity: Life at the Edge of Chaos. London, 1995. Pp. 23–72, 130ff. Некоторые критики Гулда выставляли себя на посмешище, стремясь возродить концепцию божественной воли и целостной вселенной, обращаясь к образу богини земли Геи. Это гегельянство нью-эйджа.

Да, рассуждения Гулда во многом основаны на роли крупных потрясений – например, вызванных влиянием внеземных тел. И все же это не единственный путь, которым случайность проникает в исторический процесс. Как показали сторонники “теории хаоса”, природа довольно непредсказуема – даже когда с неба не падают метеориты, – чтобы сделать точные предсказания практически невозможными.

В современном обиходе математиков, метеорологов и других ученых “хаос” не синоним анархии. Это слово не означает, что в природе не существует законов. Оно означает лишь то, что эти законы настолько сложны, что нам фактически не под силу делать точные предсказания, а потому многое из происходящего вокруг нас кажется случайным или хаотичным. Поэтому, как сказал Иэн Стюарт, “Бог может играть в кости, одновременно создавая вселенную, где царит совершенный закон и порядок”, поскольку “даже простые уравнения [могут] рождать движение такой сложности, такой чувствительности к измерению, что оно кажется случайным” [169] . Если точнее, теория хаоса занимается стохастическим (то есть якобы случайным) поведением, наблюдающимся в рамках детерминистических систем.

169

Stewart I. Does God Play Dice? The New Mathematics of Chaos. London, 1990. Pp. 2f., 6.

Изначально этот феномен интересовал только последователей выдающегося французского математика Анри Пуанкаре. Пуанкаре полагал, что при многократной трансформации математической системы должна возникать периодичность, однако Стивен Смейл и другие ученые обнаружили, что во множественных измерениях некоторые динамические системы не ограничиваются четырьмя типами состояния покоя, описанными Пуанкаре для двух измерений. Используя предложенную Пуанкаре топологическую систему установления соответствия, можно было выявить ряд “странных аттракторов” (таких как канторово множество), к которым тяготели такие системы. “Странность” этих систем заключалась в крайней сложности предсказания их поведения. Из-за их чрезвычайной чувствительности к начальным условиям для безошибочного прогнозирования необходимо было располагать невозможно точным знанием их исходных точек [170] . Иными словами, кажущееся случайным поведение на самом деле не совсем случайно – оно просто нелинейно: “Даже когда наша теория детерминистична, не все ее предсказания подтверждаются воспроизводимыми экспериментами. Подтверждаются лишь те, которые выдерживают небольшие изменения начальных условий”. Теоретически мы могли бы предсказать, какой стороной упадет подброшенная монетка, если бы точно знали ее вертикальную скорость и количество оборотов в секунду. На практике это слишком тяжело – то же самое a fortiori относится и к более сложным процессам. В связи с этим, хотя теоретически вселенная все же детерминистична, “любые ставки на детерминизм бесполезны. Лучшее, на что мы способны, это вероятности… [поскольку] мы слишком глупы, чтобы разглядеть закономерность” [171] .

170

Ibid. 57ff., 95ff. Приведу конкретный пример: кажется, что логистическое установление соответствия x -> kx (– x) (то есть производной нелинейного уравнения xt+= kxt (– xt)) становится случайным, как только k принимает значение больше 3. Однако если k увеличивается постепенно, возникает закономерность: когда x изображается в зависимости от k, получается диаграмма бесконечной бифуркации – так называемое “фиговое дерево” (названное в честь открывшего его Митчелла Фейгенбаума), ibid. Pp. 145ff.

171

Ibid. Pp. 289–301.

Теория хаоса получила множество применений (и породила множество производных). Одним из первых стала классическая физическая задача “трех тел” – о непредсказуемости гравитационного воздействия двух равновеликих планет на частицу пыли, – что астрономы на практике наблюдали на примере очевидно случайной траектории вращения Гипериона вокруг Сатурна. Теория хаоса применима также к турбулентности жидкостей и газов – это особенно интересовало Митчелла Фейгенбаума. Бенуа Мандельброт обнаружил другие хаотические закономерности в своей работе “Фрактальная геометрия природы”: фрактал, по его определению, “продолжал демонстрировать четко определенную структуру в большом диапазоне масштабов” – прямо как “фиговое дерево” Фейгенбаума. Исследование Эдварда Лоренца о конвекции в погоде дает нам один из самых поразительных примеров хаоса в действии: он использовал фразу “эффект бабочки”, чтобы описать чрезвычайную зависимость климата от начальных условий (имея в виду, что взмах крыла единственной бабочки сегодня может в принципе определить, случится ли через неделю ураган на юге Англии). Иными словами, малейшие колебания состояния атмосферы могут приводить к серьезным последствиям – отсюда и невозможность хотя бы примерно точно прогнозировать погоду (даже при наличии мощнейшего в мире компьютера) более чем на четыре дня вперед. Роберт Мэй и другие также обнаружили хаотические закономерности в флуктуациях популяции насекомых и животных. В известном роде теория хаоса наконец подтверждает то, о чем давно догадались Марк Аврелий и Александр Поуп: даже если мир кажется “порождением случая”, он все равно обладает “четкой и прекрасной” – пускай и непостижимой – структурой. “Заключено в природе мастерство, / Хоть неспособен ты постичь его” (Пер. В. Микушевича).

Очевидно, что теория хаоса имеет широкий спектр применения в социальных науках. Экономистам теория хаоса помогает объяснить, почему прогнозы и предсказания, основанные на их линейных уравнениях, которые служат фундаментом для большинства экономических моделей, так часто не оправдываются [172] . Тот же принцип, “что простые системы не обязательно обладают простыми динамическими характеристиками”, пожалуй, можно применить и к миру политики [173] . Это по меньшей мере должно предостеречь экспертов от разработки простых теорий об определяющих факторах выборов. Наше понимание хаотических систем, как заметил Роджер Пенроуз, позволяет нам в лучшем случае “смоделировать типичные исходы. Может, прогноз погоды и не всегда сбывается на самом деле, однако он вполне убедителен в качестве одного из вариантов погоды” [174] . То же самое относится к экономическим и политическим прогнозам. Составитель долгосрочных прогнозов в лучшем случае может предложить нам ряд убедительных сценариев и признать, что выбор между ними станет лишь догадкой, но не пророчеством.

172

См.: Kay J. Cracks in the Crystal Ball // Financial Times, 29 September 1995.

173

Stewart I. Does God Play Dice? The New Mathematics of Chaos. London, 1990. P. 21.

174

Penrose R. Shadows of the Mind: A Search for the Missing Science of Consciousness. London, 1994. P. 23.

К хаостории

Но как же применить теорию хаоса историкам, которых интересует не предсказание будущего, а понимание прошлого? Недостаточно просто сказать, что человек, подобно всем другим организмам, испытывает на себе влияние хаотического поведения мира природы, хотя не возникает никаких сомнений, что до самого конца девятнадцатого века погода была, пожалуй, главным определяющим фактором благополучия большинства людей. Однако в современной истории все больше влияния в этом отношении получают действия других людей. В XX веке жизнь большего, чем когда-либо ранее, количества людей оборвалась из-за других людей – а не под влиянием природы.

Философское значение теории хаоса заключается в том, что она пересматривает понятия причинности и случая. Она спасает нас не только от абсурдного мира идеалистов вроде Оукшотта, где нет причинно-следственной связи, но и от столь же абсурдного мира детерминистов, где есть лишь цепочка предопределенной каузальности, основанной на законах. Хаос – стохастическое поведение в детерминистических системах – предполагает наличие непредсказуемых исходов, даже если последовательность событий объединена причинно-следственной связью.

Поделиться:
Популярные книги

Шатун. Лесной гамбит

Трофимов Ерофей
2. Шатун
Фантастика:
боевая фантастика
7.43
рейтинг книги
Шатун. Лесной гамбит

Чайлдфри

Тоцка Тала
Любовные романы:
современные любовные романы
6.51
рейтинг книги
Чайлдфри

Измена. Жизнь заново

Верди Алиса
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Жизнь заново

Ты всё ещё моя

Тодорова Елена
4. Под запретом
Любовные романы:
современные любовные романы
7.00
рейтинг книги
Ты всё ещё моя

Уязвимость

Рам Янка
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Уязвимость

Сама себе хозяйка

Красовская Марианна
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Сама себе хозяйка

Вперед в прошлое 5

Ратманов Денис
5. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 5

Газлайтер. Том 9

Володин Григорий
9. История Телепата
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Газлайтер. Том 9

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Штуцер и тесак

Дроздов Анатолий Федорович
1. Штуцер и тесак
Фантастика:
боевая фантастика
альтернативная история
8.78
рейтинг книги
Штуцер и тесак

Все ведьмы – стервы, или Ректору больше (не) наливать

Цвик Катерина Александровна
1. Все ведьмы - стервы
Фантастика:
юмористическая фантастика
5.00
рейтинг книги
Все ведьмы – стервы, или Ректору больше (не) наливать

Сопряжение 9

Астахов Евгений Евгеньевич
9. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
технофэнтези
рпг
5.00
рейтинг книги
Сопряжение 9

Истинная поневоле, или Сирота в Академии Драконов

Найт Алекс
3. Академия Драконов, или Девушки с секретом
Любовные романы:
любовно-фантастические романы
6.37
рейтинг книги
Истинная поневоле, или Сирота в Академии Драконов

Заставь меня остановиться 2

Юнина Наталья
2. Заставь меня остановиться
Любовные романы:
современные любовные романы
6.29
рейтинг книги
Заставь меня остановиться 2