Волшебный двурог
Шрифт:
— Как это так?
— Все это можно сделать, опираясь на важные положения, касающиеся извлечения корней из комплексных чисел. Эта операция не очень проста. Она делается при помощи так называемых корней из единицы…
— Не совсем понимаю, — перебил Илья, — запутался!..
— Ничего, смелее! Допустим, что мы извлекаем из комплексного числа корень пятой степени. Переходим к тригонометрической форме комплексного числа и пишем:
где к = 0, 1, 2, 3, 4, как мы уже это выяснили ранее. Но когда мы перемножаем комплексные числа, углы, вернее, аргументы комплексных чисел складываются и ничто не мешает
— 446 —
Отсюда вытекает утверждение, что все значения корня из комплексного числа можно получить, умножая одно из этих значении на разные значения корпя той же степени из единицы, то есть на вторую скобку правой части. Представляете себе?
— Кажется, теперь представляю, — осторожно признался Илья. — Только разве это так важно, написать в таком виде, а не в другом?
— В таком кропотливом деле, как это, — отвечал Мнимий, — нельзя пренебрегать ни малейшим упрощением. Так и в данном случае, то есть для куба, при решении уравнения
x3 = 1
Первый корень, конечно, равен единице, а другие два…
— Другие два, — подсказал Илюша, — получаются из квадратного уравнения, то есть из такого:
где в правой части неполный квадрат суммы. Решая квадратное уравнение, получаем:
— Правильно… — заметил Мнимий. — Но давайте проделаем еще один поучительный опыт: возведем наш только что полученный икс-второй в квадрат:
— И получился, — сказал Илья, — не кто иной, как сам икс-третий! Ну, а если его еще и в куб?.. Правильно! Единица получается. Все в порядке.
— Так вот, — продолжал Мнимий, — назовем один из корней из единицы, то есть наш икс-второй, греческой буквой альфа. Тогда икс-третий, как вы только что выяснили, будет а2. А теперь я должен еще отметить, что среди всех корней из единицы (для квадратного корня два, для кубического три, и так далее, то есть их число совпадает с числом единиц в показателе корня) имеются такие корни, которые обладают весьма интересным и полезным свойством. Если мы один из таких корней будем возводить последовательно в возрастаю-
— 447 —
щие степени, начиная со второй, то получим все остальные корни данной совокупности. Например, второй и третий корни кубические из единицы (первый, конечно, единица) обладают этим свойством, так что
а22 = а3; а32 = а2; а23 = а1 = 1.
Если же взять для другого примера все корни шестой степени из единицы, от а1 до а6, то из них только два (а именно а1 и а5) обладают этим свойством и называются первообразными корнями. Например, из корней четвертой степени
y3 + py + q = 0,
а формулу Кардана напишем в таком сокращенном виде:
то корни нашего уравнения будут таковы:
y1 = A + B;
y2 = А + 2В;
y3 = 2А + В.
— Все-таки, — вымолвил опасливо Илюша, — это получается не так-то просто… С квадратным одна минута, а тут…
— Есть и более сложные задачи, а у сложных задач и способы решения довольно хитрые. Да это еще не все! А дальше способен слушать? А то закроем заседание нашей комиссии — и по домам!
— Нет, нет, — взмолился Илюша, — мне хочется все-таки до конца дослушать!
— «До конца»! — повторил ворчливо Радикс. — Ты дума-
— 448 —
ешь, у этой штуки есть конец? Что касается меня, то я в этом отнюдь не уверен. Так еще немножко проползти можно…
— Поползем! — ответил Илюша, вздохнув потихонечку.
— Воля твоя, — отвечал Радикс, — только потом чтобы не жаловаться, что, дескать, замучили!
— Не буду жаловаться! — храбро заявил Илья.
— Тогда слушай дальше, — продолжал Радикс.
— Слушаю!..
— В конце восемнадцатого века замечательный французский математик Лагранж пытался разобраться во всех способах решения уравнений третьей и четвертой степеней. После того как Эйлер нашел сочетания значений двух кубических корней в формуле Кардана, чтобы получить значения всех трех искомых корней, изучение алгебры комплексных чисел сильно двинулось вперед. Лагранж обратил внимание на то, что любой из двух кубических радикалов в формуле Кардана можно выразить через три корня уравнения при помощи следующей формулы (в зависимости от того, какой корень считается первым, какой — вторым, какой — третьим):
1/3 (x1 + x2 + 2x3)
— Совсем я запутался! — с огорчением пробормотал Илья. — Чем эта формула поможет? Откуда взять корни, когда я еще не решил уравнения? Значит, надо сперва воспользоваться формулой Кардана. Какой смысл в этой формуле?..
— Видите ли, — вмешался Мнимий, — вы правы в том отношении, что в деле разыскания корней эта формула помочь не может. Но чтобы представить себе, как связаны корни кубического уравнения с его коэффициентами, она в высшей степени полезна.