Вопрос жизни. Энергия, эволюция и происхождение сложности
Шрифт:
Nick Lane
The vital question
Energy, Evolution, and the Origins of Complex Life
Книга издана при поддержке “Книжных проектов Дмитрия Зимина”.
Издательство CORPUS ®
Посвящается Ане – моей музе и спутнице в этом волшебном путешествии
Введение
Почему жизнь такова, какова она есть?
Никто не может сказать, почему жизнь такова, какой мы ее знаем. Вся сложная жизнь на Земле восходит к общему предку. Это был одноклеточный организм, возникший из простых бактериальных предшественников в результате уникального стечения обстоятельств: единственный раз за 4 млрд лет. Было ли это исключительным событием – или планета помнит и другие, неудачные “эксперименты” по созиданию сложной жизни? Неизвестно. Ясно лишь, что общий предок был уже очень сложной клеткой. В своем совершенстве он был сравним с клетками нашего организма [1] , и эту сложность унаследовали не только вы и я, но и все остальные его потомки, от деревьев до муравьев. Взгляните на свою клетку под микроскопом и сравните ее с клеткой амебы: боюсь, вы не сможете различить
1
Большинство ученых считает, что Последний всеобщий предок по сложности был сравним с бактериями, а не с клетками животных. – Прим. науч. ред.
Развитие жизни на Земле вообще идет странным путем. Жизнь возникла спустя примерно полмиллиарда лет с момента формирования планеты (около 4 млрд лет назад), но, достигнув уровня бактерий, развитие остановилось на два с лишним миллиарда лет – срок, равный половине возраста Земли. Бактерии 4 млрд лет сохраняют простоту морфологии (но не биохимии). Совсем иначе дело обстоит с морфологически сложными организмами: растения, животные, грибы, водоросли и одноклеточные протисты отделились от единого общего предка сравнительно недавно: полтора-два миллиарда лет назад. Их общий предок уже был клеткой “современного” типа со сложным внутренним строением и поразительно мощными молекулярными механизмами. Работу последних обеспечивали биохимические наномашины, структура которых кодировалась тысячами новых генов, большая доля которых неизвестна у бактерий. Не сохранилось никаких переходных форм, “недостающих звеньев”, способных указать пути и причины возникновения этих сложных признаков и перебросить мост через пропасть между морфологической простотой бактерий и огромной сложностью всей остальной жизни. Вот она, “черная дыра” эволюции.
Мы ежегодно тратим миллиарды долларов на биомедицинские исследования, пытаясь найти ответ на сложнейший вопрос: почему мы болеем? Мы располагаем гигантским объемом данных о взаимодействии генов, белков и целых регуляторных сетей. Мы строим детализированные математические модели и разрабатываем компьютерные симуляции для проверки предсказаний. Но при этом мы не знаем, как возникло то, что мы изучаем! Как можно надеяться понять причину болезни, если мы понятия не имеем, почему клетки устроены именно так? Мы не можем судить об обществе, не зная его истории. Точно так же мы не сможем разобраться в работе клеток, если не узнаем, как они возникли. Смысл этих вопросов выходит далеко за пределы практической значимости: ответы на них могут помочь приблизиться к пониманию, почему мы здесь. Какие законы обусловили рождение Вселенной, звезд, Солнца и, в конечном счете, жизни? Если где-то еще во Вселенной может появиться жизнь, то будет ли ее развитие подчиняться тем же законам? Если существует инопланетная жизнь, похожа ли она на земную? Способность задаваться метафизическими вопросами – одно из тех свойств, что делают нас людьми. Прошло более 350 лет с момента открытия клеток, а мы до сих пор не знаем, почему земная жизнь такова.
Вы могли даже не заметить своего незнания. Учебникам и журналам часто не удается в достаточной степени осветить эти “детские” вопросы. Интернет затягивает в вязкую трясину всевозможных неупорядоченных фактов, смешанных в разных пропорциях с чушью. Но проблема не только в избытке информации: немногие биологи понимают, что в их отрасли знаний зияет брешь. Большинство биологов занимается другими вопросами: изучает крупные организмы, отдельные группы растений или животных. Сравнительно немногие работают с бактериями, и еще меньше тех, кто посвятил себя изучению ранней эволюции клеток. Проблем добавляют и креационисты с их “разумным замыслом”. Признавая, что у нас пока нет ответов на все вопросы, мы рискуем развязать руки воинствующим скептикам, которые из этого признания радостно делают вывод, что мы вообще не располагаем сведениями об эволюции. Конечно, у нас есть такие сведения. Более того, их пугающе много. Гипотезы о происхождении жизни и ранней эволюции клеток должны объяснять множество фактов и при этом не противоречить ни одному из них. Совокупность этих фактов можно представить в виде хрустального башмачка, который должен прийтись точно впору. Гипотеза должна безболезненно умещаться в “башмачок” фактов, а также предсказывать существование неочевидных связей, что можно экспериментально проверить. Нам очень многое известно о естественном отборе и некоторых других, более случайных, формирующих геном процессах. Все эти факты согласуются с концепцией эволюции клеток. Но “башмачок” все еще ждет нужную ножку. Мы не знаем, где Золушка, и не знаем, почему жизнь пошла именно таким своеобразным путем.
Ученые любознательны. Если бы эта проблема и вправду была такой явной, какой она кажется мне, о ней все уже знали бы. Но на самом деле даже ее существование далеко не очевидно. Ответы, понятные лишь узкому кругу исследователей, противоречат друг другу, и за ними уже трудно разглядеть изначальный вопрос. К тому же ключи к решению этой проблемы могут лежать в разных, довольно далеко отстоящих друг от друга дисциплинах: в биохимии, геологии, филогенетике, экологии, химии, космологии. Редкий человек может назвать себя компетентным во всех этих областях. Нам повезло жить во времена стремительного развития геномных технологий, в разгар научной революции. В нашем распоряжении тысячи целиком расшифрованных геномов, общая протяженность которых измеряется миллиардами знаков. Нередко они несут противоречащие друг другу послания из далекого прошлого. Интерпретация этих данных требует наличия строгого логического, вычислительного и статистического аппарата и понимания биологических закономерностей. Мнения, суждения, интерпретации повисли тяжелыми тучами. В моменты, когда между ними появляется просвет, открывается сюрреалистический вид, всякий раз все страннее. От привычной картины не осталось и следа, а новая пугает. С точки зрения исследователя, ищущего себе великие задачи, от этой просто дух захватывает. Главные вопросы биологии все еще ждут ответов. Эта книга – моя собственная попытка подступиться к ним.
Как бактерии связаны со сложными формами жизни? Корни этого вопроса уходят в 70-е годы XVII века, когда голландец Антони ван Левенгук открыл микроорганизмы. В резвящихся “зверушек” сначала мало кто верил, но вскоре существование микробов подтвердил не менее изобретательный Роберт Гук. Левенгук в знаменитой работе 1677 года описал бактерий, которые были “необыкновенно малы – настолько малы, что, по-видимому, и целая сотня их, выстроенная в ряд, не превысила бы песчинки. Чтобы сравняться с ней, потребовался бы по крайней мере десяток тысяч этих существ”. Многие сомневались, что Левенгук увидел бактерий при помощи своих примитивных микроскопов, хотя сейчас это считается бесспорным фактом. Левенгук находил бактерий везде: и в дождевой воде, и в море, даже на собственных зубах. Он интуитивно провел границу между “зверушками” и “гигантскими чудищами” – микроскопическими протистами – с их “лапками” (ресничками) и занятными повадками. Он даже заметил, что самые большие клетки состоят из множества “глобул” (шариков), которые он сравнивал по размеру с бактериями (хоть и не использовал этот термин). Среди глобул Левенгук почти наверняка увидел клеточное ядро: хранилище генов всех сложных клеток. После этого на несколько столетий все утихло. Знаменитый систематик Карл Линней спустя полвека после Левенгука просто отнес все микроорганизмы к роду Chaos (бесформенные) внутри типа Vermes (черви). Эрнст Геккель, великий немецкий эволюционист, современник Дарвина, вновь отделил бактерии от остальных микроорганизмов. И все же в идейном плане значительных шагов не было сделано до середины XX столетия.
Проблема систематики бактерий встала особенно остро при попытке объединить их в группы по биохимическим признакам. Бактерии из-за невероятно разнообразных метаболических путей кажутся совершенно не поддающимися такой классификации. Они могут расти почти на чем угодно: на цементе, аккумуляторной кислоте, бензине. Но если все эти сильно различающиеся способы существования не имеют ничего общего, как мы можем классифицировать бактерий? И как разобраться с ними без классификации? Подобно тому, как периодический закон принес в химию логику и связность, биохимия упорядочила науку об эволюции клеток. Голландец Алберт Клюйвер показал, что, несмотря на исключительное разнообразие живых организмов, их жизнедеятельность поддерживают очень схожие биохимические процессы. Столь различные процессы, как дыхание, брожение и фотосинтез имеют единую основу, а это свидетельствует о том, что все живое восходит к общему предку. Что справедливо для бактерий, справедливо и для слонов, утверждал Клюйвер. С точки зрения биохимии, барьер между бактериями и сложными клетками незначителен. Биохимия бактерий несравнимо многообразнее, но ключевые процессы поддержания жизнедеятельности у них по существу такие же, как у сложных клеток. Возможно, ближе всего к пониманию различия между бактериями и сложными клетками подошли ученик Клюйвера Корнелис ван Ниль и Роджер Станьер. Бактерия, утверждали они, неделима, как и атомы, и представляет собой минимальную функциональную единицу. Многие бактерии, как и мы, способны дышать кислородом, но бактериальная клетка вовлекается в этот процесс целиком: в ней нет предназначенных для дыхания компартментов, как в наших клетках. Бактерии делятся пополам, когда вырастают, но функционально они неделимы.
Так началась первая из трех биологических революций второй половины XX века, не оставивших камня на камне от прежних представлений о живом. Первая революция началась в “лето любви” 1967 года, а разожгла ее Линн Маргулис. “Сложные клетки появились не в ходе «классического» естественного отбора, – утверждала Маргулис. – Они зародились в оргии взаимного ублажения, когда клетки были так близки, что даже проникали друг в друга”. Долговременное сотрудничество нескольких видов называется симбиозом и напоминает обмен товарами и услугами. В случае микроорганизмов товары – это метаболические субстраты, дающие энергию для поддержания жизни клеток. Маргулис говорила об эндосимбиозе – разновидности симбиоза, при котором поддерживающие друг друга клетки находятся внутри клетки хозяина, почти как магазины под крышей одного торгового центра. Догадки на этот счет появились еще в начале XX века, а их развитие поразительно напоминает судьбу теории тектоники литосферных плит. Очертания Африки и Южной Америки выглядят так, будто эти материки составляли единое целое, а после разошлись, но это незамысловатое наблюдение долго казалось нелепым. Точно так же многим приходило в голову, что некоторые структуры сложных клеток подозрительно напоминают бактерии, даже будто бы самостоятельно растут и делятся. Может, это и есть бактерии?
Подобно теории тектоники литосферных плит, эти идеи опередили свое время и не получили развития до 60-х годов, начала эры молекулярной биологии, когда подтверждение этих идей стало возможным. Это и сделала Линн Маргулис. Она исследовала две специализированные клеточные структуры: митохондрии и хлоропласты. В митохондриях осуществляется клеточное дыхание – сжигание пищи в кислороде с выделением энергии, которая идет на поддержание жизненных процессов клетки. Хлоропласты – особые приспособления фотосинтезирующих растений, преобразующие энергию солнечного света в энергию химических связей. Эти органеллы (греч. “миниатюрные органы”) сохранили собственные геномы, кодирующие несколько десятков генов, задействованных в механизмах дыхания и фотосинтеза. Как только были получены точные последовательности этих генов, стало ясно, что митохондрии и хлоропласты произошли от бактерий. Но обратите внимание, что я говорю “произошли от бактерий”: сейчас это уже не бактерии, они утратили автономность, так как большая часть их жизненно важных генов (минимум 1,5 тыс.) находится в ядре – генетическом “центре управления” клетки.
Маргулис оказалась права насчет происхождения митохондрий и хлоропластов: к 80-м годам в этом почти никто уже не сомневался. Но другие ее идеи оказались чересчур смелыми. Она была убеждена, что сложная клетка, которую сейчас называют эукариотической (греч. “с настоящим ядром”), представляет собой эндосимбиотическую мозаику. Маргулис считала, что и многие другие компоненты эукариотической клетки произошли от бактерий. Так, реснички (“лапки”, обнаруженные Левенгуком), по мысли Маргулис, произошли от спирохет. Таким образом, эукариотическая клетка произошла в результате целой серии слияний, что в дальнейшем оформилось в виде теории серийных эндосимбиозов. Не только отдельные клетки, но и весь мир является результатом совместной жизнедеятельности колоссального числа бактерий: так гласит гипотеза Геи Линн Маргулис и Джеймса Лавлока. Но если гипотеза Геи (очищенная от телеологии Лавлока) сейчас переживает возрождение, превратившись в более строгие “системные исследования Земли”, то идея сложной “эукариотической” клетки как бактериального ансамбля не получила большой поддержки. Все-таки большинство клеточных структур не похоже на потомков бактерий, и не найдено никаких генетических признаков, которые бы это подтверждали. Конечно, в чем-то Маргулис была права, но во многом и заблуждалась. Маргулис скончалась от инсульта в 2011 году. Она производила довольно противоречивое впечатление пренебрежением к дарвиновской гипотезе отбора, верой в конспирологию и воинственным феминизмом. Для одних она остается примером героини-феминистки в науке, другие считают ее чудачкой. Увы, большая часть ее наследия весьма далека от реальной науки.