Возвращение чародея
Шрифт:
Многим кажется удивительным, как же это Луна не падает на Землю, почему не падают на Землю под влиянием всемирного тяготения искусственные спутники? А ответ прост: они падают!Спутники падают, причем почти с тем же именно ускорением, с каким падают вниз на нашей планете все тела: с ускорением g= 9,8 м/сек 2. Вспомните о круговом движении: если бы не было постоянного падения, тело сошло бы с орбиты и по касательной к ней улетело в мировое пространство.
Ученые в своих расчетах при выводе спутников на орбиту
Но что означает здесь слово «первая»? Разве есть и вторая космическая скорость?Да, есть. Она равна приблизительно 11,2 км/сек. Если выстрелить ракетой с такой начальной скоростью, то она навсегда покинет окрестности нашей планеты, превратится в искусственный спутник Солнца.
Многое, очень многое подсчитывается по законам Ньютона — трем законам движения и закону всемирного тяготения. И все же сегодня мы обязаны сказать: очень многое, но не все. Явившись высоким уточнением прежних представлений о движении, механика Ньютона, в свою очередь, тоже несла в себе свое ограничение, свои пределы применения.
Весьма важно, и это, собственно, является завершающей частью всякого исследования, четко определить, до каких границ был сделан вывод, какой объем, какую сферу охватила данная теория.
Поговорим об этом. Посмотрим, что охватила Ньютонова механика и в чем заключается ее ограниченность.
Однако прежде мы должны сказать несколько слов о «четвертом титане» физики и космологии — Альберте Эйнштейне (помните? Аристотель, Галилей, Ньютон, Эйнштейн). Ведь это он раздвинул галилее-ньютоновские границы познаваемого мира, он первый показал ограниченность механики, созданной Ньютоном.
«Вождь великой относительности»
Любопытно, что и Эйнштейн, подобно Ньютону, в раннем своем детстве не давал оснований видеть в себе зачатки гениальности. «Из вас, Эйнштейн, никогда ничего путного не выйдет», — сказал ему однажды без обиняков учитель немецкого языка.
Эйнштейн родился весной 1879 года в германском городе Ульм, а в юношеском возрасте уехал в Швейцарию. Там он сделал попытку поступить в Цюрихский политехникум, но попытка не удалась: блестяще сдав математику, он срезался на языках и… естественных науках. В письмах к друзьям он часто называл себя «неудачником», но это не отравляло ему настроения.
«Я веселый зяблик, — писал он же о себе, — и не способен предаваться меланхолии!»
Педагогический факультет он все же в конце концов окончил и стал работать сотрудником патентного бюро. Одновременно он занялся научными исследованиями и тут-то начался его взлет.
После опубликования Эйнштейном первых научных трудов он был приглашен на должность профессора Цюрихского университета. В 1914 году Эйнштейн переехал в Берлин и вел там научную работу вплоть до прихода к власти фашистов.
В 1933 году он эмигрировал из Германии
Эйнштейн уже в 26 лет разработал новую, необычную теорию пространства и времени, которая прославила его имя. Затем связал пространство и время с тяготением и развил свою теорию на более общий случай. Первую теорию он назвал частной (или специальной) теорией относительности, а вторую — общей теорией относительности. Слава обеих теорий была настолько велика (хотя первоначально мало кто их понимал), что письма, адресованные двумя словами: «Европа, Эйнштейну», — незамедлительно доставлялись адресату.
Когда однажды Эйнштейн посетил в американском штате Аризона индейское племя, индейцы присвоили ему имя «Вождь Великой Относительности» и подарили костюм вождя.
Эйнштейн всегда стремился к уединению. Он утверждал, что идеальное место для работы ученого — это должность смотрителя маяка. Эйнштейн очень любил прогулки на яхте и игру на скрипке. Юмору он остался верен до последних своих дней. «Юмор и скромность создают равновесие», — говорил он.
Ограниченность классической механики
Когда хотят выразить особое уважение к той или иной работе, теории или человеку, говорят: «Вот это класс!», или «Это классическая теория», или «Он — классик». Совсем не обязательно (как думают иные), чтобы речь шла о давно прошедшем. Если так и получается по большей части, то только потому, что на расстоянии лучше видится. Мы и от живого-то человека отходим слегка, чтобы его получше разглядеть, и от картины, и от здания.
Лишь в наиредчайших случаях, зато при исключительных обстоятельствах, при исключительной уверенности мы говорим о современнике: «Он — живой классик». Но как бы редко это ни бывало, это подтверждает все же высказанную мысль, что в классики «выходят» за реальные выдающиеся заслуги, а не за выслугу лет.
Механика Ньютона единодушно всеми и всюду называется «классической механикой» именно в силу своей совершенной безупречности для тех пределов, для которых ее разрабатывали Ньютон и его научные последователи. Тем интереснее разобраться, с каких позиций она представляется приближением, введением в какую именно физическую теорию она является.
Оказывается, есть целых три «физики», точнее, три больших раздела современной физики, которые учитывают нечто такое, чего не учитывал Ньютон, и которые являются следующими шагами в развитии физической картины мира. Названия этих разделов: частная теория относительности, общая теория относительности и квантовая механика.
Каждый новый раздел представляет собой более общую теорию, чем была теория Ньютона. Ни одна из этих теорий не отбрасывает классической механики, а включает ее в себя, выводит Ньютоновы законы при тех или иных упрощениях, выводит, когда становится приблизительной.
Частная (или специальная) теория относительности, созданная великим физиком нашего времени Альбертом Эйнштейном, выросла из механики, оптики и электромагнетизма. Одно из ее исходных положений заключается в том, что в природе есть предельная скорость — это скорость света в вакууме, равная всегда и всюду приблизительно 300 тысячам км/сек. Никакое движение тела, никакое изменение состояния материальной среды не может происходить с большей скоростью.