Возвращение чародея
Шрифт:
В отличие от классической механики, молчаливо убежденной, что скорость тел никак не может повлиять на их массу, линейные размеры, объем и на промежутки времени, частная теория относительности доказывает, что в направлении движения тел'a становятся короче, их массы с ростом скорости становятся больше, объемы меньше, явления, происходящие с движущимися телами, продолжительнее.
Общая теория относительности, она же релятивистская теория тяготения («релятивизм» значит «относительность»), учитывает влияние тяготения на свойства пространства и времени.
Здесь можно провести одну любопытную
Когда Аристотель формулировал свои законы движения, он не задумывался над тем влиянием, которое оказывает на падающее тело среда: в данном случае воздух, тормозящее действие (трение) его молекул. И в общем-то по-своему в сделанных выводах греческий философ был прав: все же видят, что морская галька падает быстрее веточки акации.
Примерно то же допущение (но не ошибку!) делал и Ньютон (как Аристотель, сам того не подозревая); формулируя свои законы движения, и он не задумывался над той зависимостью, которая имеется между свойствами движущегося тела и характером «среды»: в этом случае — системы отсчета, относительно которой рассматривается движение. Там, где эта зависимость практически несущественна, Ньютон совершенно прав: в условиях нашей земной жизни, а также наблюдая за движением небесных тел, мы убеждаемся на множестве примеров, что все законы Ньютона строго соблюдаются.
Аристотель полагал, что когда он смотрит прямо перед собой в ясную голубизну пространства, то до тех пор, пока взор не встретит какого-нибудь предмета — дерева, птицы, пылинки, — перед ним предельно осуществимая в природе «пустота», в которой происходят все события при появлении в ней предметов. В идеальный вакуум, в пустоту без воздуха и иного содержимого, Аристотель, как мы помним, совсем не верил.
Ньютон видел в окружающем пространстве прежде всего некоего материального посредника сил тяготения, среду, через которую они передаются, как волны через воду моря. Он писал своему другу:
«Допустить, что тело может действовать на другое тело на расстоянии через пустоту без вмешательства какого-либо посредника, мне кажется таким абсурдом, что, я думаю, ни один философски мыслящий человек не сможет примириться с этим».
Позднее, во второй половине XIX века, идея гравитационного посредника получила всеобщее распространение как идея мирового эфира. Нетрудно видеть, что эта идея тесно связана с признанием существования абсолютного пространства, отождествляемого Ньютоном с идеальной пустотой.
Абсолютное пространство, как некое неограниченное вместилище, является ареной, где располагаются тела и разыгрываются события. Само оно не зависит от материальных тел, наполняющих его, и от их движений. Если бы каким-нибудь чудесным образом из пространства можно было вынуть все тела, то оно ничуть не изменилось бы, как остается неизменным ящик, когда из него высыпают все апельсины.
Это пространство считали «плоским», или Евклидовым, то есть обладающим свойствами, сформулированными великим греческим геометром Евклидом (смысл слова «плоское» станет ясным чуть дальше).
Оторванно от материальных тел и от их движений Ньютон понимал и сущность
Абсолютное пространство и абсолютное время, по Ньютону, существуют независимо не только от движения материальных тел, но и друг от друга.
Наглядно мир Ньютона можно изобразить следующим образом.
Вообразим себе обыкновенную прямоугольную комнату, расположенную где-то во Вселенной далеко от небесных тел. В комнате нет никаких предметов, частиц, полей. Теперь сделаем умственное усилие и допустим, что стены комнаты, ее потолок и пол вдруг стали раздвигаться, пока не убежали в бесконечность. В такой-то «комнате» и вершатся явления природы в соответствии с законами классической механики. Пространство этой «комнаты» неподвижно, пребывает в абсолютном покое.
Вот та иллюстрация, которая помогает наглядно представить Ньютоново абсолютное пространство.
Можно пояснить и время.
Комната «живет» не одно мгновение. Бесконечная длительность ее существования безотносительно ко всем процессам, которые могут в ней протекать, дает представление и об абсолютном времени.
В подобную «комнату», в Евклидов мир, тяготение, как и любое физическое явление, должно быть привнесено откуда-то извне, «из-за пространства» и «из-за времени».
Оказывается, однако, как показал тот же Эйнштейн, тяготение и свойства пространства и времени тесно связаны между собой. Тела, следуя определенным законам, «искривляют» пространство и удлиняют промежутки времени, а искривленное пространство оказывает свое влияние на траектории движущихся тел. Кажется, что тело движется все время по прямой, а в действительности оно движется по какой-то кривой, радиус которой определяется местными свойствами пространства. Отдаленно это напоминает человека, отправившегося по экватору прямо вперед и незаметно начавшего описывать кривую вокруг земного шара.
Третье направление, двигаясь по которому классическая механика встречает себе препятствие, — это направление к миру молекул, атомов, элементарных частиц, подчиняющихся законам иной, квантовой механики.
Неприменимость принципов Ньютона в этой области может быть проиллюстрирована наглядно невозможностью делать здесь некоторые утверждения, обычные для классической механики.
В мире больших масштабов, в мире нашей практики мы можем сказать: передняя плоскость поезда, движущегося с определенной скоростью из Ленинграда в Москву, ровно в шесть часов утра пересекает переднюю плоскость платформы станции Клин. В микромире, как мы увидим, когда займемся квантовой механикой, такие утверждения невозможны (см. стр. 164).