Возвращение времени. От античной космогонии к космологии будущего
Шрифт:
Это, конечно, не является примером наивного применения второго начала термодинамики. Оно утверждает, что замкнутые системы увеличивают свою случайность, становясь со временем более беспорядочными и менее сложными и структурированными. Но это противоречит тому, что мы видим: сложность растет по мере формирования структур на всех уровнях Вселенной. При этом самые замысловатые конструкции сформировались совсем недавно.
Увеличение сложности означает время. Не существует статической и одновременно сложной системы. У Вселенной есть история, и она рассказывает о возрастающей сложности.
Это не отменяет второго начала термодинамики. Замкнутые системы со временем приходят к равновесию. Кроме того, формирование сложных систем на самом деле не противоречит увеличению энтропии, поскольку приращение
Один квант энергии, возможно, стал катализатором формирования сложной молекулы и, следовательно, снизил энтропию биосферы, но, когда он переизлучился в виде инфракрасного света в пространство, это увеличило энтропию Солнечной системы в целом. Пока увеличение энтропии, вызванное разогревом межзвездной пыли где-то в космосе, превышает уменьшение энтропии за счет создания молекулярных связей, долгосрочный суммарный результат согласуется со вторым началом термодинамики.
Поэтому, если рассматривать Солнечную систему как замкнутую, то и ее самоорганизация совместима с общим увеличением энтропии. Система в целом старается прийти к равновесию и увеличивает энтропию там, где может. Второе начало термодинамики делает все, чтобы привести Солнечную систему к равновесию. Но пока в ней есть большая звезда, излучающая горячие фотоны в холодное космическое пространство, достижение равновесия откладывается. Так как звезды светят миллиарды лет, у нас еще много времени. Само существование звезд тесно связано с вопросом, почему Вселенная сейчас, спустя почти 14 миллиардов лет после своего рождения, далека от равновесия.
А почему существуют звезды? Если Вселенная должна стремиться к увеличению энтропии и беспорядку, как случилось, что ее наводняют звезды, выводящие Вселенную из равновесия? Если наша Вселенная является Вселенной Лейбница, в ней должно существовать нечто вроде звезд.
Физика звезд основывается на двух необычных особенностях законов природы. Первый – это невероятно тонкая настройка параметров современной физики. Эта настройка включает массы элементарных частиц и константы связи четырех взаимодействий. Она обеспечивает возможность ядерного синтеза. Водород в составе звезд ведет себя не так, как в отсутствие ядерных сил. Вместо того чтобы беспорядочно перемещаться, атомы водорода собираются в центре звезды и взаимодействуют по-новому. Они сливаются, образуя гелий и несколько других элементов. (Представьте, что вы оказались в клетке. Все одно и то же скучное равновесие, и каждый час похож на любой другой. И вдруг открывается дверь, и вы оказываетесь в абсолютно новом мире!) Законы термодинамики, примененные к атомам, не могут предсказать ядерный синтез и его возможности.
Вторая необычная особенность законов природы связана с поведением системы, части которой удерживаются вместе за счет силы тяжести. Гравитация нарушает наши наивные представления о термодинамике. Обыденное наблюдение, которое также является следствием второго начала термодинамики, говорит нам, что тепло распространяется от горячих тел к холодным: лед тает, вода в чайнике кипит. Тепло перестает перетекать, когда температура двух тел сравняется и они достигнут состояния равновесия. Обычно, когда мы забираем энергию у тела, его температура падает, а когда передаем, температура растет. Поэтому, когда поток тепла распространяется от горячего тела к холодному, последнее нагревается, а первое остывает. Это продолжается до тех пор, пока их температура не станет одинаковой. Поэтому воздух в помещении имеет одну температуру. Если бы это было не так, энергия перетекала бы из теплой стороны комнаты в холодную, пока не было бы достигнуто общее значение температуры.
Такое поведение делает равновесную систему устойчивой к эффектам, вызываемым небольшими флуктуациями. Предположим, в результате флуктуации в одной части комнаты стало чуть теплее. Энергетический поток будет распространяться от теплой части, охлаждая ее, в сторону холодной части, нагревая ее, и вскоре температура снова выровняется. Большинство систем работает так. Но это не все.
Представьте: есть газ, который при передаче ему энергии охлаждается, и нагревается, когда энергию забирают. Это может показаться парадоксальным, но такие газы существуют. Они должны быть нестабильными. Предположим, наша комната наполнена таким газом при одной температуре. Флуктуация переместит немного энергии из левой части комнаты в правую. Тогда левая сторона нагреется, правая остынет. Это приведет к увеличению потока энергии из левой, горячей части, к холодной. И чем больше энергии передается прохладной части комнаты, тем сильнее она остывает. Это пример нестабильности, в котором разница температур между двумя частями комнаты постоянно растет.
Теперь рассмотрим нагретую часть комнаты. Предположим, произошла другая флуктуация, в результате которой в центре теплой части температура немного снизилась. Благодаря тому же феномену с положительной обратной связью произойдет дальнейшее охлаждение центра и разогрев области вокруг него. Со временем небольшая флуктуация перерастает в сильно выраженную особенность. Это может происходить снова, и скоро появится сложная структура из чередующихся холодных и горячих объемов газа.
Система, которая так работает, со временем превращается в сложную. Сказать, что из нее получится, трудно, потому что есть огромное количество конфигураций, в которые такая система может эволюционировать. Мы называем эти системы антитермодинамическими. Для них второе начало термодинамики действует, однако раз передача энергии в объем газа его охлаждает, состояние, в котором равномерно распределен газ, крайне нестабильно.
Гравитационно-связанные системы ведут себя таким необычным образом. Звезды и звездные системы, галактики, черные дыры – все это антитермодинамические системы. Они остывают, когда вы затрачиваете на них энергию. Все они неустойчивы. Это не допускает однородности и стимулирует формирование структур в пространстве и времени.
Это во многом объясняет, почему Вселенная не находится в равновесии сейчас, спустя 13,7 миллиарда лет после своего рождения. Рост структуры и сложности Вселенной во многом объясняется тем, что наполняющие ее гравитационно-связанные системы (от скоплений галактик до звезд) антитермодинамические.
Нетрудно понять, почему такие системы антитермодинамические. Гравитацию от других сил отличают два основных свойства: во-первых, она дальнодействующая, во-вторых, повсеместно действующая. Рассмотрим планету на орбите вокруг звезды. Если вы затратите на нее энергию, она перейдет на орбиту дальше от звезды, где скорость ее вращения уменьшится. Таким образом, увеличение энергии снижает скорость планеты, и это уменьшает температуру в системе (температура – лишь мера средней скорости тел в системе). И наоборот: если вы заберете энергию, планета переместится ближе к звезде и начнет вращаться быстрее. Таким образом, отдача энергии нагревает систему.
Мы можем сравнить это с поведением атома, части которого удерживаются вместе электрическими силами между зарядами. Электрическая сила, как и гравитационная, действует на больших расстояниях, но лишь между противоположными зарядами. Положительно заряженный протон притягивает отрицательно заряженный электрон, но когда электрон связан с протоном, получившийся атом имеет нулевой суммарный заряд. В этом случае говорят, что система насыщена, атом не притягивает другие частицы. Солнечная система работает противоположным образом, потому что когда звезда притягивает несколько планет, получившаяся система будет притягивать пролетающие мимо тела еще с большей силой, чем звезда без планет. Это еще пример нестабильности: гравитационно-связанная система притягивает все больше тел.