Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, ативещество и бозон Хиггса
Шрифт:
И хотя мы не можем прямо измерить фазу, она наглядно показывает нам, что бывает, когда вращаешь частицу. Если повернуть фермион всего один раз, его волновая функция не совпадет по фазе с отправной точкой на 180 градусов. Это в точности то же самое, что умножить на минус единицу.
Интерференция волн
Поверните его второй раз, и получите изменение
Сейчас я немного сжульничаю. Понимаете, минус единица, которая возникает, когда вращаешь фермион (и, соответственно, плюс единица, которая возникает, когда вращаешь бозон) — это в точности та же самая минус единица, которая возникает, если поменять один фермион на другой того же типа.
Эти числа (–1 для фермионов, +1 для бозонов) одинаковы, и математика вращения тесно связана с математикой замещения, однако, к сожалению, этим и ограничиваются простые аналогии, позволяющие объяснить, почему у этих двух феноменов один и тот же коэффициент. Вот как — с некоторым отчаянием — писал об этом Ричард Фейнман:
Приносим свои извинения за то, что не в состоянии дать вам простое объяснение… Судя по всему, это одно из немногих мест в физике, где есть закон, который можно сформулировать очень просто, но для которого никто не нашел простого и легкого объяснения… Вероятно, это значит, что мы не до конца понимаем этот фундаментальный принцип.
Итак, все сводится к минус единице. У фермионов она есть, у бозонов нет. Это очень простая симметрия.
Если рассмотреть эти два варианта — минус единица и плюс единица — становится сразу понятно, почему частицы делятся ровно на две группы, а еще можно догадаться, почему они ведут себя настолько по-разному.
Важная роль минус единицы
Минус единица всплывает в физике на каждом шагу, и очевиднее всего это в электрическом заряде.
То, что у электрона заряд –1, а у протона +1, — это историческая условность, которой мы обязаны Бенджамину Франклину. Франклин обнаружил, что если потереть шерсть о воск, у шерсти получится избыток электричества, а у воска недостаток. Позднее стало понятно, что электроны с шерсти остаются на воске, что впоследствии и привело к выбору знака. Однако, по правде говоря, который заряд какой, не так уж важно, главное — соблюдать последовательность. Взаимодействие определяется исключительно произведением двух зарядов. Если умножить отрицательное число на отрицательное, получится положительное, а это значит, что результат взаимодействия двух электронов и двух протонов один и тот же — +1. Этот плюс означает, что одинаковые заряды отталкивают друг друга.
Такое же соотношение мы наблюдаем и у фермионов с бозонами. Как мы уже видели, если подменить две идентичные частицы, у фермионов получается –1, а у бозонов +1. Не нужно даже думать про подмену — просто запомнить, какое число связано с каким видом частиц. Можно даже понять, как поведет себя сложная частица, просто перемножив все ее компоненты. В одном протоне три кварка (фермиона), и если умножить –1 три раза саму на себя, снова получится –1, и именно поэтому протоны и нейтроны — это фермионы.
Или приведу другой пример, который я обошел и замолчал в первой главе. Одни частицы в зеркале выглядят так же, а другие — в перевернутом
Четность подчиняется тем же правилам, что и подмена частиц. Если берешь больше одной частицы, надо их перемножить. Например, обе ваши руки антисимметричны (их четность равна –1): в зеркале они перевернуты. Но если вы поднесете к зеркалу обе руки одновременно, отражение в целом будет такое же, как оригинал (симметрично ему), то есть четность его будет равна +1.
Рассмотрим частицу под названием пион, состоящую из кварка (+1) и антикварка (–1). Я могу разобраться, как она выглядит в зеркале, если перемножу четности ее компонентов. Четность пиона равна –1.
По тем же самым правилам пара пионов обладает четностью +1, а три пиона — общей четностью –1. Все это выглядит сущей экзотикой, пока не поймешь, что четность и правда должна сохраняться, и при электромагнитном и сильном взаимодействии именно так и происходит.
А вот слабое взаимодействие — это совсем другое дело, и именно здесь таится ключ к подлинному пониманию эксперимента Кронина и Фитча, о котором мы писали раньше. Если помните, Кронин и Фитч в 1964 году изучали каоны. Каоны — на редкость хитрые маленькие твари.
Создайте кучу каонов — и примерно половина из них проживет всего лишь одну миллиардную секунды или около того. Другая половина, как правило, живет примерно в 600 раз больше. Это настолько большая разница, что длинные и короткие каоны на самом деле — разные частицы.
И когда они распадаются, трупики тоже обычно получаются совсем разные. Обе версии распадаются на пионы, однако короткоживущая версия распадается на два пиона (четность +1), а долгоживущая на три (четность — 1). До Кронина и Фитча все считали, будто так себя ведут все каоны.
А на самом деле нет. Примерно один из 500 каонов-долгожителей немыслимым образом распадается на два пиона. То есть некоторые долгоживущие каоны, в сущности, превращаются в короткоживущие. Разница не так уж мала. Сохраняемое качество — четность — очевидно, в конечном итоге не всегда сохраняется, а ведь это, как мы уже видели, строжайшее требование ко всему веществу во вселенной. А чтобы разобраться, как так получается, нам нужно понять, что такое симметрия минус единицы.
Я потратил колоссальное количество чернил, пытаясь объяснить разницу между разными видами частиц — и всегда получалось так, что эта разница сводится к знаку «минус», который и измерить-то невозможно. Между прочим, я умею читать мысли, и вы сейчас думаете примерно так: «Да кому какое дело?!»
Принцип Паули
Давайте кратко повторим ход наших рассуждений.
Мы живем в квантовой вселенной, в которой о том, где скорее всего находится частица, говорит квадрат квантово-механической волны.
Некоторые частицы — фермионы — ставят перед амплитудой волны знак «минус», если поменять местами две из них.
Очевидно, что все это неважно, поскольку вероятность — это квадрат волны, и минус исчезает при умножении.
А я ведь, кажется, говорил, что минусу вы обязаны своим существованием!