Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, ативещество и бозон Хиггса
Шрифт:
Поскольку в уравнение входят и гравитационная постоянная, и постоянная Планка, планковский масштаб учитывает воздействие как сильной гравитации, так и квантовой механики. В самом-самом начале вселенной — примерно через 10–44 секунды после Большого Взрыва (это очень-очень мало и называется, кстати, планковское время) — квантовые флуктуации создали черные дыры, которые буквально заполонили вселенную. И мы правда не понимаем, каковы были законы физики в планковское время.
Планковская масса задает естественную шкалу, позволяющую понять, чего можно ожидать от фундаментальных частиц, однако мы так и не нашли частицу, чья масса хотя
Если, к примеру, протон обладает массой в 10–19 планковской, физики понимают, что это как-то очень мало и, наверное, требует объяснений. Какова вероятность, что мы получили столь малую величину по чистой случайности? Поскольку ни одна из известных частиц даже близко не подходит к массе, которая им полагается «от природы», остается вопрос: почему все такое легкое?
Как устроена гравитация?
Когда я описывал стандартную модель, то прибегал к выражениям вроде «три силы за исключением гравитации». Но почему же мы исключаем гравитацию? По всей видимости, ее роль в порядке вещей не так уж незначительна.
Общая теория относительности великолепно описала гравитацию, однако нельзя отрицать, что гравитация по форме разительно отличается от всех остальных взаимодействий: ни частицы-переносчика, ни квантовой неопределенности. Как же нам примирить ее со всеми прочими, а в частности — с квантовой механикой?
Поскольку гравитация доминирует, когда массы достаточно велики, а квантовая механика — на мелких масштабах, как правило, этим двум теориям нечего делить. В нормальных обстоятельствах на то, как объединить квантовую механику и гравитацию, нам намекают излучение Хокинга и эффект Унру, однако мы до сих пор не знаем точно, как объединить эти теории в целом.
Мы не понимаем, как быть с сингулярностями вроде тех, которые мы обнаруживаем в центрах черных дыр и в момент Большого взрыва. Сингулярность — это космологический аналог — волшебная сумка из игры в «Dungeons & Dragons»: можно поместить в конечный объем пространства буквально бесконечное количество вещества. По правде говоря, как это получается, не знает никто.
Чего нам еще не хватает?
Я сделал довольно смелое заявление, что стандартная модель позволяет нам предсказать все частицы, какие только мы ни наблюдали, и ничего лишнего. Строго говоря, так и есть, только я позабыл напомнить вам, что есть еще несколько физических явлений, которые пока остаются необъясненными, и стандартная модель тут оказывается бессильной.
К несчастью для нас, это не какие-нибудь мелочи, а темное вещество с темной энергией, которые совокупно составляют приблизительно 95 % плотности энергии во вселенной.
Если помните, темное вещество скрепляет галактики и звездные скопления, и его, по всей видимости, раз в пять-шесть больше, чем обычного вещества, состоящего из протонов и нейтронов. Гравитационное воздействие темного вещества мы наблюдаем непосредственно, и это наводит на очевидный вывод, что где-то поблизости шныряет какая-то частица темного вещества. А поскольку темное вещество обеспечивает так много массы, частиц темного вещества должно быть, прямо скажем, очень много. Темное вещество должно быть электрически нейтральным, иначе мы бы его сразу заметили. Этим условиям из всей стандартной модели удовлетворяют
Однако есть проблема и похуже — по крайней мере с точки зрения каталогизации долей энергии во вселенной. Это темная энергия, которая, судя по всему, составляет чуть ли не 73 % общей плотности энергии во вселенной. Такого шила в мешке не утаишь.
Простейшее объяснение темной энергии состоит в том, что это суммарное воздействие частиц, возникающих и исчезающих в вакууме. В некотором смысле считать темную энергию энергией вакуума — это идеальный выход из положения. Прорешайте уравнения — и окажется, что энергия вакуума вызывает ускоряющееся расширение вселенной, в точности как темная энергия.
Однако тут таится подвох. Как же без этого.
Плотность вакуума, которая получается из теоретических расчетов, катастрофически велика. Если взять и посчитать ее, выйдет число примерно в 10120 раз больше, чем наблюдаемая во вселенной плотность темной энергии. Если вам интересно, откуда берется такое число, имейте в виду, что плотность вакуума — это отношение одной планковской массы к кубу планковской длины.
Проблема темной энергии куда болезненнее, чем кажется на первый взгляд, поскольку мы даже не знаем, в какой области физики искать решение. Очень может быть, что мы не вполне верно интерпретируем стандартную модель. А может статься, темная энергия заложена в законы гравитации — в эйнштейновскую космологическую постоянную. Если дело в этом, нам либо придется смириться с тем, что темная энергия просто есть, либо мы так и не сможем найти к ней подход, пока не построим рабочую теорию квантовой гравитации.
Напрашивается вывод, что мы просто не представляем себе, что такое темная вселенная. Мы можем количественно оценить ее, что, конечно, уже хорошо, однако о ее сущности ничего особенного сказать не можем.
Сколько можно?! Вернемся к нарушению симметрии!
Довольно нытья. Мы уже так давно отклонились от темы симметрии, что стыдно жаловаться, как много мы не знаем. Вы раскошелились на книжку не ради извинений, а ради объяснений.
Если взглянуть на все чуточку шире, мы обнаружим, что на самом деле перед нами не несовершенные симметрии, а совершенный в своем несовершенстве персидский ковер. А что если было такое время в истории вселенной, когда эти симметрии были совершенны, а потом что-то случилось — например, не так легли карты квантовой механики — и равновесие нарушилось [110] ? Иначе говоря, нарушилась симметрия?
110
Ответ: не исключено.
Нарушение симметрии уже встречалось нам пару раз, однако поскольку мы думаем о мозголомном мире внутренних симметрий и о физике частиц, не помешает освежить в памяти, о чем, собственно, речь.
Предположим, вы обследуете ледяную планету Хот. Куда бы вы ни направились, жизнь повсюду более или менее одинакова — стоит трескучий мороз. Это потому, что планета находится в центре пространства. Она обладает идеальной сферической симметрией. Жизнь одинакова, куда бы вы ни пошли, и хотя, если вам так уж приспичило рисовать карту, вы вольны выбирать хоть Северный полюс, хоть экватор, без дополнительных ориентиров вроде звезд или каких-то ландшафтных примет подобные направления более или менее лишены смысла.