Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, ативещество и бозон Хиггса
Шрифт:
Тем, кто привык иметь дело только с плюсом и минусом, мысль о трех разных вариантах заряда может показаться диковатой, однако пугаться этого я вам запрещаю. Цвета — это совсем как электрический заряд, просто у частицы может быть цвет, антицвет или нейтральное цветовое состояние.
То, что цветов именно три, не совпадение, а просто следствие тройки в SU (3). У лептонов цветов нет, так что лептоны не участвуют в сильном взаимодействии, точно так же как электрически нейтральные частицы остаются незамеченными электромагнетизмом.
Эта симметрия гласит, что если поменять красные частицы на зеленые и зеленые на красные (или совершить любую другую подмену), взаимодействия останутся прежними. Иначе говоря,
Да-да, понимаю. Сохраняется именно то, что симметрично.
Одно из самых диковинных свойств сильного взаимодействия состоит в том, что все встречающиеся в природе частицы во вселенной, похоже, бесцветны. В состав протона входят красный, зеленый и синий кварки. Если вам когда-нибудь случалось интересоваться смешением цветов, вы знаете, что если смешать все цвета спектра, получится белый, то есть вообще никакого цвета. Именно поэтому протонам и нейтронам нужно по три кварка, не больше и не меньше.
Цвет, как и все остальные калибровочные симметрии, неизбежно приводит к существованию частиц-переносчиков взаимодействия под названием глюоны. На первый взгляд глюоны играют ту же роль, что и фотоны в электромагнетизме. Когда двум заряженным частицам нужно притянуть или оттолкнуть друг друга, они рассылают туда-сюда фотоны. Подобным же образом два кварка обмениваются посланиями при помощи глюона. Однако есть существенная разница. Фотоны сами по себе нейтральны, а следовательно, два фотона не станут взаимодействовать друг с дружкой. Глюонам повезло меньше. Вы когда-нибудь видели, как маленький ребенок пытается отмотать от рулона кусочек скотча? Если да, вы, наверное, заметили, что в результате весь рулон превращается в беспорядочную груду из комьев и петель. Глюоны прямо взаимодействуют друг с другом и, следовательно, постоянно друг другу мешают. Кстати, именно поэтому сильное взаимодействие ограничено атомным ядром.
А что в этом такого симметричного?
Какой бы изящной ни была стандартная модель, приходится очень многое держать в голове. Наверное, полезно будет привести табличку симметрий стандартной модели.
Наверное, вы заметили, что я подсунул в симметрию слабого взаимодействия какую-то непонятную буковку L. Вы спрашиваете, что это? Это реликт кое-чего, с чем мы уже сталкивались: нейтрино всегда левши. Леворукость и слабое взаимодействие связаны теснейшим образом. Частицы-правши абсолютно невосприимчивы к слабому взаимодействию (точно так же, как бесцветные частицы невосприимчивы к сильному взаимодействию, а нейтральные — к электромагнетизму), а это прямо и недвусмысленно означает, что частицы-левши и частицы-правши одного типа на самом деле существа абсолютно разные. Вскоре мы увидим, что эта небольшая асимметрия играет очень важную роль.
Вроде бы все это — умножение сущностей без надобности, и может показаться, будто мы ушли очень далеко от симметрии в привычном представлении, так что, наверное, полезно будет свести все частицы стандартной модели в единую схему. Так мы и поступили прямо на следующей странице.
Правда, красиво?
Это всего лишь один из способов нарисовать разные заряды всех частиц. В нашем случае каждая точка схемы соответствует особому сочетанию слабого изоспина и слабого гиперзаряда. Если вам известно, как они сочетаются, электрический заряд вы получите в качестве бесплатного приложения.
Наверняка вы быстро заметили, что сами по себе частицы подчиняются очень строгой закономерности. Если бы мы не слишком прилежно регистрировали частицы и некоторые пропустили, свободные места
Однако рисовать я могу только на двумерной странице, поэтому в этой схеме упущено много полезной информации. Например, кварки могут быть одного из трех цветов, однако красный кварк окажется на нашей схеме ровно на том же месте, что и синий. Иными словами, в зависимости от того, как мы поглядим на частицы, мы увидим разную симметрию.
Стандартная модель
Электрослабое взаимодействие и не только
Все эти симметрии — отнюдь не просто математические фокусы. В 1960 году Шелдон Глэшоу обнаружил, что слабое и электромагнитное взаимодействие можно объединить в одно «электрослабое взаимодействие». В течение следующих десяти лет эту гипотезу усовершенствовали Стивен Вайнберг и Абдус Салам. Это одна из милых особенностей симметрии. Взгляните на соотношение между слабым изоспином, слабым гиперзарядом и обычным электрическим зарядом, и вы увидите, как тесно они связаны. Это верный признак, что и стоящие за ними взаимодействия тоже, вероятно, можно объединить.
Объединение взаимодействий — это очень важное открытие. Во-первых, оно здорово экономит время. Если бы — в идеале — все физические законы можно было описать одной формулой, вам не пришлось бы столько зубрить. А еще это означает, что физические законы обладают глубокой внутренней согласованностью.
Ньютона запомнили на века, поскольку он сумел объединить движение планет, качание маятников и падение яблок в единый закон всемирного тяготения. Подобным же образом на сторонний взгляд электричество и магнетизм — это совсем разные вещи. Электричество управляет взаимодействием воздушных шариков, которые потерли о свитер, а магнетизм — компасами. Но стоит вам — если вы, конечно, Максвелл, — копнуть поглубже, и окажется, что вся разница только в том, движутся частицы или нет.
Объединить электромагнетизм и слабое взаимодействие оказалось несколько сложнее, однако суть этого объединения сводится к тому, что в самом начале времен была единая сила, описываемая одним уравнением, однако с четырьмя частицами-переносчиками. И только остывание вселенной и довольно загадочное поле Хиггса сделали так, что эти две силы кажутся независимыми.
Согласно унифицированной электрослабой модели фотон и Z0 на самом деле не две разные частицы, а два разных состояния одной и той же частицы. А почему бы и нет, собственно? Оба электрически нейтральны. Оба обладают спином-1. И хотя сегодня у Z0 есть заметная масса, в начале времен и Z0, и фотон были лишены массы.
Иначе говоря, фотон и Z0 и выглядели, и взаимодействовали с другими частицами одинаково. Они реагировали не на заряд, который все мы знаем и любим, а на гиперзаряд частицы (сочетание качества, которое мы теперь называем слабым гиперзарядом, и обычного электрического заряда). После того как вселенная достаточно остыла, фотон и Z0 стали заметно различаться. В процессе разделения электрослабого взаимодействия на «электрическое» и «слабое» определенные частицы начинали взаимодействовать скорее с одним, чем с другим. Скажем, нейтрино после разрыва стало отвечать только на слабую часть, а электрическую вообще перестало видеть, поскольку оно нейтрально.