Взрыв и взрывчатые вещества
Шрифт:
Чтобы понять сущность ядерных реакций и отличие их от химических реакций, необходимо коротко рассмотреть современные представления о строении атома.
Рис. 30. Схематическое строение атома гелия.
Атом по своему строению имеет некоторое сходство с солнечной системой (рис. 30): он состоит из центрального ядра, чрезвычайно малого по сравнению с размерами атома, но имеющего большую массу; она составляет более 99,9 проц. всей массы атома. Ядро имеет положительный электрический заряд. Вокруг ядра на различных от него расстояниях
Простейший атом — атом водорода — имеет заряд ядра, равный единице, вокруг этого ядра вращается соответственно один электрон; заряд ядра атома гелия равен двум единицам и вокруг него вращается два электрона.
Если атому сообщить тем или иным путем энергию, например, подвергая вещество действию света, то электрон перескакивает на орбиту, более далекую от ядра. Если количество поглощенной энергии достаточно велико, то электрон совсем отрывается от атома, который после этою уже имеет электрический заряд. Такой атом, потерявший электрон (или приобретший лишний электрон), называют ионом.
Когда два атома соединяются в молекулу, то часто это сводится к тому, что два электрона, расположенных на внешних орбитах, каждый из которых вращался вокруг своего ядра, теперь начинают вращаться вокруг обоих ядер, находящихся на некотором расстоянии друг от друга. При этом обычно выделяется энергия. Эта энергия относительно невелика. Так, при соединении двух атомов водорода в молекулу на один грамм водорода выделяется 52 больших калории. Десятками больших калорий на грамм вещества измеряется также энергия, затрачиваемая на отрыв электрона от атома или иные превращения, связанные с изменением движения одного или нескольких наиболее удаленных от ядра электронов. Так, энергия, выделяемая при соединении одного грамма водорода с кислородом с образованием воды, равна 34 большим калориям.
Как и сам атом, ядро его (за исключением ядра атома водорода) также имеет сложное строение. Ядра атомов состоят из положительно заряженных частиц — протонов, заряд которых равен заряду электрона, и из частиц почти той же массы, но не имеющих заряда, — нейтронов. Масса нейтрона в 1838 раз больше массы электрона.
В ядрах атомов находятся в тесной близости друг от друга положительно заряженные частицы — протоны; несмотря на это, они не разлетаются, отталкиваясь друг от друга, как это свойственно частицам, имеющим одноименный заряд. Протоны и нейтроны в ядре сдерживаются ядерными силами притяжения, действующими между очень сближенными частицами.
Природа этих сил не вполне выяснена, но известно, что они огромны по сравнению с силами, удерживающими в атоме удаленные от ядра электроны. При этом величина ядерных сил различна у разных видов атомов.
Таких видов, отличающихся в первую очередь зарядом ядра и обычно также его массой (атомным весом), до недавнего времени было известно сто. Заряд ядра, равный единице, имеет водород, заряд в 26 единиц имеет железо, заряд в 92 единицы имеет уран. Силы, связывающие протоны и нейтроны в ядре, наибольшие у атомов со средними зарядами и массой ядра, вроде никеля, железа и т. п. У тяжелых атомов вроде урана они значительно меньше. Иначе говоря, если представить себе, что из протонов и нейтронов образуется ядро урана, то энергии при этом выделилось бы меньше, чем при образовании ядра железа, считая на одинаковые количества вещества.
Отсюда следует по закону сохранения энергии, что если происходит ядерная реакция, при которой ядра атомов большей массы, например урана, превращаются в ядра атомов средней массы, то должна освободиться большая энергия.
Точно так же с еще более сильным выделением энергии должно идти превращение легких ядер в ядра большей массы, например, ядер водорода в ядра гелия.
На реакциях первого типа основано устройство атомной бомбы, на второй реакции — водородной бомбы.
Обычно ядерные реакции идут очень медленно и на скорость их протекания влиять очень трудно. Поэтому заставить идти ядерную реакцию с той большой скоростью, которая необходима, чтобы получить взрыв, задача не простая.
Однако она была разрешена путем, очень сходным с тем, который уже давно был известен для некоторых обычных химических реакций.
Возьмем каплю нитроглицерина и будем ее держать при умеренно повышенной температуре, например при 100°. Нитроглицерин постепенно разложится, и взрыва не произойдет. Если же мы будем нагревать при той же температуре сто граммов нитроглицерина, то опыт закончится разрушительным взрывом. Объясняется это тем, что при медленном разложении нитроглицерина выделяется тепло, но, когда нитроглицерина взято мало, это тепло через поверхность капли успевает отводиться наружу; разогрева взрывчатого вещества почти не происходит.
Если же нитроглицерина взять больше, например, в тысячу раз, то и тепла будет выделяться в тысячу раз больше. Поверхность же нитроглицерина, через которую тепло отводится наружу, будет только в сто раз больше. Поэтому тепло не будет успевать уходить, температура нитроглицерина станет расти, скорость распада от этого тоже будет расти, что и приведет к взрыву.
Те, кто знакомы с сельским хозяйством, знают, что если недосушенное сено сложить в стог, то оно начинает нагреваться и этот разогрев может привести к загоранию. Если такое же сено лежит в небольших копнах, то разогрева не наблюдается, так как путь теплу из середины копны до ее поверхности гораздо короче и сама поверхность всех копен больше, чем в большом стогу. Объясняется это совершенно так же, как и в примере с нитроглицерином.
Оказалось, что путем увеличения количества вещества можно ускорить и некоторые ядерные реакции.
Известны некоторые элементы, ядра атомов которых претерпевают самопроизвольный распад. Это уран, торий, радий и некоторые другие радиоактивные элементы. Распад перечисленных радиоактивных элементов протекает очень медленно: радий распадается наполовину за 1600 лет, уран еще медленнее — за четыре с половиной миллиарда лет.
До недавнего времени не было известно никаких путей, чтобы ускорить радиоактивный распад; ни нагрев в доступных пределах, ни повышение давления не изменяют ею скорости. Однако такие пути были найдены. Дело в том, что при некоторых формах самопроизвольного распада тяжелых ядер, ведущих к образованию ядер более легких элементов, выделяются нейтроны. При поглощении такого нейтрона тяжелым ядром оно распадается, причем вновь образуются нейтроны. При этом при распаде каждого ядра выделяется не один, а два — три нейтрона. Поэтому, если все выделяющиеся нейтроны попадают в ядра и вызывают их распад, то число распадающихся ядер непрерывно и очень быстро растет, ядерная реакция самоускоряется и принимает характер взрыва.
Однако это происходит лишь в том случае, если количество взятого вещества превосходит некоторую критическую величину. Для урана 235,[8] например, это критическое количество, если заряд имеет форму шара, равно приблизительно одному килограмму; такой шар по размерам соответствует небольшому яблоку.
Если количество вещества взять меньше, то не все образующиеся нейтроны будут поглощаться ядрами; часть из них пролетит через вещество в окружающую среду, не успев попасть в ядро, размеры которого очень малы по сравнению с размерами атома. Таким образом, при малом количестве радиоактивного вещества взрыва не произойдет так же, как это было при разогреве малого количества нитроглицерина.