Взрывающиеся солнца. Тайны сверхновых
Шрифт:
ПУЛЬСАРЫ
В 1964 г. астрономы стали замечать, что радиоисточники не обязательно бывают постоянными, во всяком случае, не более постоянными, чем источники света. Световые волны в зависимости от температуры в разной степени преломляются атмосферой. Так как атмосфера включает области с разными температурами, а температуры эти меняются во времени, то слабый свет, излучаемый звездами, искривляется в ту или другую сторону, направление света все время чуть-чуть меняется и кажется, что звезда «мерцает». Радиоволны точно так же произвольно отклоняются заряженными частицами атмосферы, и кажется, что они тоже «мерцают».
Чтобы исследовать это быстрое мигание,
В июле 1967 г. радиотелескоп Хьюиша начал «прочесывать» небо с целью обнаружения и изучения мерцающих радиоисточников. За пультом была его студентка, английский радиоастроном Сьюзен Джоселина Белл (р. 1943).
В августе Сьюзен заметила что-то необычное. Отмечалось отчетливое мерцание одного источника между Вегой и Альтаиром, которое наблюдалось в полночь, когда обычно мерцания почти не было. Более того, мерцание это, казалось, приближалось и удалялось. Она обратила на это внимание Хьюиша, и к ноябрю стало ясно, что над этим стоило призадуматься.
Радиотелескоп был приспособлен для производства ускоренной записи, и оказалось, что на мерцание накладывались периодические вспышки радиации, которые были очень короткими, продолжаясь не более 1/20 доли секунды. Вот, оказывается, почему мерцание приближалось и удалялось. Пока источник не прослушивался очень тщательно, вплотную, инструмент, «ощупывающий» его, пропускал тот момент, когда приходила вспышка радиации, но обычно попадал в интервалах между вспышками.
Вспышки радиации продолжались, и было обнаружено, что они являлись через короткие и очень регулярные интервалы. Интервалы между вспышками равнялись 1 1/3 секунды, или, уточняя до восьмого десятичного знака, вспышки приходили с интервалом 1,33730109 с.
В небе до сих пор не наблюдалось ничего, что происходило бы так регулярно и с такими краткими интервалами. Чем бы ни было вызвано это явление, оно было беспрецедентным! По-видимому, это было что-то циклическое. Это, видимо, был астрономический объект, который обращался вокруг другого, или вращался вокруг своей оси, или пульсировал и по какой-то причине порождал вспышку микроволн при каждом обращении, или обороте, или пульсации.
Пульсация показалась сначала лучшим объяснением, и Хьюиш назвал это «пульсирующей звездой» (Pulsating Sourses of Radioemission); это название очень скоро сократилось и превратилось в «пульсар».
Теперь, когда Хьюиш знал, как пульсары излучают свои микроволны, эти объекты стало легко обнаруживать. Каждый импульс производил достаточно сильную вспышку микроволн. Трудность, однако, заключалась в том, что обычные радиотелескопы не могли уловить величину отдельной вспышки, а только среднюю величину излучения за какой-то период времени. Если вспышки усреднялись с состоянием покоя межвспышечных периодов, то уровень микроволновой интенсивности составлял лишь одну двадцать седьмую часть пика вспышки, а эта средняя величина недостаточно высока, чтобы быть особенно заметной.
Радиотелескоп Хьюиша мог регистрировать вспышки, и он начал «прочесывать» небо в поисках других излучений того же рода. К февралю 1968 г. было открыто еще три пульсара, и Хьюиш счел себе вправе сообщить о своем открытии.
Многие тут же включились в поиски, и скоро было обнаружено еще пять пульсаров. К началу 80-х годов уже было отождествлено около четырехсот пульсаров.
Один из пульсаров был открыт в октябре 1968 г. там, где всегда можно было наткнуться на что-то неожиданное, — в Крабовидной
Путаницы здесь уже не было. Если бы речь шла о постоянном излучении, будь то рентгеновские лучи или радиоволны, то было бы очень непросто отличить излучение, идущее от центральной звезды, от той ее части, которая исходит от туманности. Но очень быстрая и регулярная пульсация могла быть запеленгована точно, поскольку поступала она из одной точки, а не из целого пространства. И эта одна точка в Крабовидной туманности совпадала с центральной звездой, как совпадала она с центральной звездой и в туманности Гама.
Возникла мысль, что точно так же, как центральная звезда планетарной туманности — белый карлик, центральная звезда остатка сверхновой — пульсар. Иначе говоря, звезда, которая, взрываясь, становится сверхновой, коллапсирует в пульсар.
Но что такое пульсар?
Краткий период микроволновых импульсов показывает, что пульсар может пульсировать, вращаться или обращаться в течение каких-то секунд, иногда даже маленькой доли секунды. Ни одно тело не способно выдержать столь быстрые циклические изменения любого рода, если только оно не очень мало и не имеет очень сильного гравитационного поля, чтобы удержать его от разрушения в результате инерционных нагрузок от такого быстрого вращения.
Единственный известный объект, и малый по размеру, и с очень сильным собственным гравитационным полем, — это белый карлик, но даже и он недостаточно мал, а его гравитация недостаточно сильна для этого. Не оставалось ничего другого, как предположить, что пульсаром была нейтронная звезда. По крайней мере, у нее и размеры незначительные, и достаточно сильное гравитационное поле, непохоже, чтобы нейтронная звезда с ее неимоверно мощным гравитационным полем могла пульсировать. Не могла она в доли секунды и обращаться вокруг любого другого объекта (даже другой нейтронной звезды). Все же, за исключением всего прочего, оставалось одно, и это одно было: вращающаяся нейтронная звезда. Теоретически нейтронная звезда могла вращаться не только 30 раз в секунду, как это делает пульсар Крабовидной туманности, но даже тысячу и более раз в секунду. В ноябре 1982 г. был обнаружен пульсар, который посылал вспышки микроволн 640 раз в секунду, поэтому, судя по всему, он являлся нейтронной звездой, совершающей оборот вокруг своей оси немногим более чем за 1/1000 часть секунды. Его назвали «миллисекундным пульсаром».
Но почему вращающаяся нейтронная звезда должна обязательно посылать микроволновые вспышки?
Некоторые астрономы, в том числе Томас Голд (р. 1920), австриец по происхождению, занялись изучением этой проблемы. Они считали, что такая чрезвычайно уплотненная звезда должна иметь очень мощное магнитное поле и магнитные силовые линии должны как бы закручиваться спирально вокруг быстро крутящейся нейтронной звезды.
Учитывая чрезвычайно высокую температуру нейтронной звезды, она, по-видимому, должна испускать быстрые электроны, единственные объекты, движущиеся достаточно быстро, чтобы оторваться от звездной поверхности вопреки сильной гравитации. Поскольку электроны имеют электрический заряд, они будут улавливаться магнитными силовыми линиями, и единственное место, откуда они могут вырваться на волю, — это магнитные полюса нейтронной звезды. Эти магнитные полюса должны находиться на противоположных сторонах звезды, но не обязательно на полюсах вращения. (Магнитные полюса Земли, например, довольно далеки от ее полюсов вращения).