Ядерное оружие Третьего рейха. Немецкие физики на службе гитлеровской Германии
Шрифт:
Несмотря на то что в 1941 году немцы склонялись к процессу обогащения урана по технологии Клузиуса – Диккеля, у них «в запасе» имелось еще как минимум семь различных способов достижения этой цели. Сюда относятся масс-спектрограф лаборатории фон Арденне, тепловая диффузия, метод «вымывания» на основе закона распределения Нернста, применение растворов урана, «изотопный шлюз» доктора Багге, диффузия изотопов в металлах-носителях и, наконец, ультрацентрифуга. В то же время немцы игнорировали процесс использования газовой диффузии при пропускании гексафторида урана через пористое тело. А ведь именно этот способ, разработанный немецким ученым Густавом Герцем [12] , впоследствии был успешно применен в Великобритании и США. Дальнейшее изучение хода германской атомной программы
12
Племянник Генриха Герца, экспериментально доказавшего в 1888 г. существование электромагнитных волн.
Летом 1941 года внимание немецких ученых вновь было приковано к использованию в качестве атомного топлива плутония. Прошлой осенью в лабораторию барона Манфреда фон Арденне в Берлин-Лихтерфельде пришел новый сотрудник профессор Фриц Хоутерман. Судьба этого неординарно мыслившего ученого тоже сложилась весьма необычно. После победы национал-социалистов на выборах 1933 года он эмигрировал из Германии в Россию, где читал лекции по физике в одном из организованных НКВД закрытых институтов тюремного типа. После германо-советского пакта 1939 года и объявленной в связи с ним амнистии Хоутерман был выслан в Германию и передан в руки германской тайной полиции, а затем помещен в берлинскую тюрьму. Через три месяца его выпустили из тюрьмы, однако запретили работать в государственных учреждениях. Профессор Макс фон Лауэ использовал все свое влияние на то, чтобы уговорить фон Арденне принять злосчастного Хоутермана на работу в лабораторию в Лихтерфельде.
Такое решение, безусловно, пошло на пользу фон Арденне. Хоутерман приступил к выполнению своих новых обязанностей в первый день 1941 года. Первой поставленной перед ним задачей было определение эффективности различных методов выделения изотопов. Затем он приступил к определению эффективного сечения для медленных нейтронов в различных средах. Ему приходилось полагаться на существующие в природе источники излучения нейтронов, поскольку работы над созданием под эгидой почтового ведомства двух циклотронов только начинались.
Через восемь месяцев Хоутерман по результатам своей работы составил знаменитый отчет «К вопросу об инициировании цепной реакции». На 39 страницах машинописного текста он пересмотрел всю теоретическую часть проекта и впервые выполнил подробные расчеты для цепной реакции, инициированной быстрыми нейтронами [13] . Кроме того, он рассчитал критическую массу урана-235, то есть количество этого вещества, необходимое для инициирования цепной реакции под воздействием быстрых нейтронов, которая приведет к взрыву огромной разрушительной силы. Многие историки настаивают на том, что немцы никогда не занимались вопросом определения критической массы урана-235 и не думали о роли быстрых нейтронов в цепной реакции.
13
В СССР особенности цепных реакций на быстрых и медленных нейтронах рассмотрели в 1939 г. Я.Б. Зельдович и Ю.Б. Харитон.
А ведь Хоутерман занимался и той и другой проблемой. В сентябре 1942 года Зигфрид Флюгге в своем докладе о цепной реакции с использованием быстрых нейтронов подчеркивал важность получения урана-235 для «урановой бомбы». Примерно в то же время Гейзенберг в ответ на вопрос о размерах такой бомбы заявил, что она «будет размером с ананас». Год спустя Гейзенберг составил график, где показал ход цепной реакции быстрых нейтронов в массе урана-235. Кроме того, он внес исправления в расчеты критической массы урана Хоутермана на основе аналогичных работ, проведенных в 1943 году физиками из Вены Йентшке и Линтнером.
В своем отчете Хоутерман подробно остановился на возможности применения в качестве ядерного топлива плутония. В начале февраля 1941 года немецкие ученые Фольц и Хаксель заявили, что могут экспериментально доказать, что поглощение нейтронов ураном-238 на самом деле гораздо ниже, чем это было рассчитано теоретически. Далее авторы сделали вывод, что в связи с этим положение Вайцзеккера о том, что продукт распада урана-239, в свою очередь, подлежит дальнейшему делению, следует пересмотреть, так как фактически было произведено очень небольшое количество
14
Точное определение этих новых подлежащих делению ядер за несколько месяцев до этого было дано ученым из Вены Шинтльмейстером. Он доказал, что этот элемент, который теоретически мог быть использован в качестве взрывчатого вещества, получается в результате химической реакции, происходящей в урановом реакторе. Он является элементом № 94 периодической таблицы (и теперь известен как плутоний), а не № 93 (нептуний).
Таким образом, любой реактор, в котором происходит цепная реакция урана, может рассматриваться как своего рода «машина трансформации изотопов», которая по своим возможностям значительно превосходит любые другие средства выделения изотопов. Остается только определить химические средства, с помощью которых можно получить этот новый элемент внутри уранового реактора.
Стройную теорию Хоутермана можно рассматривать в качестве поворотного пункта всего германского атомного проекта. Казалось, теперь оставалось только построить урановый реактор на тяжелой воде. А до тех пор, пока это решение не получит практического воплощения, следовало срочно начинать процесс выделения урана-235.
Основной чертой любого большого научного открытия является его универсальность. Это особенно явно проявляется в военное время, когда различные научные школы в разных странах вынуждены действовать самостоятельно, ничего не зная о достижениях своих коллег. Этот тезис подтвердили параллельные исследования, проводившиеся в Германии и ее странах-сателлитах и союзниками антигитлеровской коалиции в области, например, радиолокации и реактивных двигателей [15] .
15
Также уместно вспомнить о самостоятельных исследованиях в области ядерной физики, проводившихся в те годы в СССР, например о создании под руководством И.В. Курчатова первого советского ядерного реактора, запущенного в декабре 1946 года и имевшего мощность 4000 кВт, в отличие от чикагского реактора 1942 года Э. Ферми мощностью 200 Вт.
Летом 1940 года ученые, работавшие в ряде университетов стран-союзниц, методом исключения остановились на единственном из множества способов выделения изотопа урана-235. Один за другим из-за непомерной дороговизны или технологической сложности были отметены электромагнитная реакция Нира, тепловая диффузия, применение центрифуги. Наконец, самой перспективной была признана диффузия газов через пористые тела. От тепловой диффузии, известной в Германии как «метод Клузиуса – Диккеля», пришлось отказаться, «поскольку не существует соединений урана, которые можно было бы в ней использовать».
Процесс газовой диффузии, взятый на вооружение британскими учеными, предполагает прохождение газообразного соединения урана, того самого единственно возможного для применения гексафторида урана, под точно рассчитанным давлением через мембрану. При этом атомы урана-235 легче преодолевают препятствие, чем более тяжелые атомы другого изотопа. Для того чтобы добиться нужной степени обогащения, процесс необходимо многократно повторить. Оборудование, задействованное в процессе, требует значительных затрат энергии. К тому времени этот принцип был уже хорошо известен: он был опробован английским ученым Ф. Астоном еще на начальном этапе изучения свойств изотопов, а затем в начале 30-х годов усовершенствован в Германии Густавом Герцем как способ выделения изотопов неона.