Юный радиолюбитель
Шрифт:
Для многих твоих измерений годится вольтметр с относительным входным сопротивлением не менее 1 кОм/В. Для более же точных измерений напряжений в цепях транзисторов нужен более высокоомный вольтметр. В транзисторных конструкциях приходится измерять напряжение от долей вольта до нескольких десятков вольт, а в ламповых еще больше. Поэтому однопредельный вольтметр неудобен. Например, вольтметром со шкалой на 100 В нельзя точно измерить даже напряжение 3–5 В, так как отклонение стрелки получится малозаметным. Вольтметром же со шкалой на 10 В нельзя измерять более высокие напряжения. Поэтому тебе нужен вольтметр, имеющий хотя бы три предела измерений.
Схема такого вольтметра постоянного тока показана на рис. 112. Наличие трех добавочных резисторов R1, R2 и R3 свидетельствует о том, что вольтметр
Рис. 112. Вольтметр постоянного тока на три предела измерений
Сопротивление любого из добавочных резисторов можно рассчитать по формуле, вытекающей из закона Ома: Rд = Uп/Iи — Rи, здесь Uп – наибольшее напряжение данного предела измерений.
Так, например, для прибора на ток Iи = 500 мкА (0,005 А) и рамкой сопротивлением Rи = 500 Ом сопротивление добавочного резистора R1 для предела 0–1 В должно быть 1,5 кОм, резистора R2 для предела 0-10 В — 19,5 кОм, резистора R3 для предела 0-100 В — 195,5 кОм. Относительное входное сопротивление такого вольтметра будет 2 кОм/В. Обычно в вольтметр монтируют добавочные резисторы с номиналами, близкими к рассчитанным. Окончательно же «подгонку» их сопротивлений производят при градуировке вольтметра путем подключения к ним параллельно или последовательно других резисторов. Так делай и ты.
Но тебе надо измерять не только постоянные, но и переменные напряжения, например напряжение сети, напряжения на вторичных обмотках трансформаторов. Чтобы для этой цели приспособить вольтметр постоянного тока, его надо дополнить выпрямителем, преобразующим переменное напряжение в постоянное (точнее, пульсирующее), которое и будет показывать прибор. Возможная схема такого прибора показана на рис. 113.
Рис. 113. Вольтметр переменного тока
Работает прибор так. В те моменты времени, когда на левом (по схеме) зажиме прибора положительные полуволны переменного напряжения, ток идет через диод V1, включенный для него в прямом направлении, и далее через микроамперметр РА — к правому зажиму. В это время через диод V2 ток идти не может, так как для тока этого направления диод закрыт. Во время положительных полупериодов на правом зажиме диод V1 закрывается и положительные полуволны переменного напряжения замыкаются через диод V2, минуя микроамперметр.
Добавочный резистор Rд, как и аналогичный резистор в вольтметре постоянного тока, гасит избыточное напряжение. Рассчитывают его так же, как и для постоянных напряжений, но полученный результат делят на 2,5–3, если выпрямитель прибора однополупериодный, или на 1,25-1,5, если выпрямитель прибора двухполупериодный. В нашем примере выпрямитель прибора однополупериодный, поэтому результат надо делить на 2,5–3. Более точно сопротивление этого резистора подбирают опытным путем во время градуировки шкалы прибора. Таким вольтметром можно измерять и напряжение звуковой частоты до нескольких килогерц.
Сущность действия омметра заключается
Чтобы лучше разобраться в принципе действия омметра, проведи такой опыт.
Составь из любого миллиамперметра, батареи 3336Л и добавочного резистора замкнутую электрическую цепь, как показано на рис. 114, а. Сопротивление добавочного резистора подбери так, чтобы стрелка прибора отклонилась на всю шкалу (рассчитать сопротивление можно по той же формуле, по которой мы рассчитывали сопротивление добавочного резистора к вольтметру). Подобрав добавочный резистор, разорви цепь — образовавшиеся при этом концы проводников будут входом получившегося простейшего омметра (рис. 114, б).
Рис. 114. Простой омметр:
а — подбор добавочного резистора, б — схема прибора
Подключи к щупам Rx (на схеме они обозначены стрелками) резистор небольшого сопротивления, например 10 Ом. Полное сопротивление цепи теперь стало больше на сопротивление этого резистора. Соответственно и ток в цепи уменьшился — стрелка прибора не отклоняется до конца шкалы. Это положение стрелки можно пометить на шкале черточкой, а около нее написать число 10. Потом к выводам Rx подключи резистор сопротивлением 15 Ом. Стрелка прибора отклонится еще меньше. И это положение стрелки на шкале можно отметить соответствующим числом. Далее присоединяй поочередно резисторы сопротивлением в несколько десятков ом, сотен ом, килоом и отмечай получающиеся в каждом случае отклонения стрелки. Если теперь к выводам отградуированного таким способом простейшего омметра присоединить резистор неизвестного сопротивления, стрелка прибора укажет деление на шкале, соответствующее сопротивлению этого резистора.
Когда ты будешь замыкать выводы Rx накоротко, стрелка прибора должна устанавливаться на самом правом делении шкалы. Это соответствует «нулю» омметра. Нуль же бывшего миллиамперметра в омметре будет соответствовать очень большому сопротивлению, обозначаемому знаком
Рис. 115. Омметр с установкой «нуля»
Здесь последовательно с прибором и добавочным резистором R1 включен переменный резистор R2, который служит для установки стрелки омметра на нуль. Пока батарея свежая, в цепь вводятся большая часть сопротивления резистора R2. По мере разрядки батареи сопротивление этого резистора уменьшают. Таким образом, переменный резистор, являющийся составной частью добавочного резистора, позволяет производить регулировку в цепи омметра и устанавливать его стрелку на нуль. Его обычно называют резистором установки омметра на нуль.