Юный радиолюбитель
Шрифт:
Сопротивление резистора установки омметра на нуль должно составлять 1/10-1/8 часть общего сопротивления добавочных резисторов. Если, например, общее добавочное сопротивление по расчету должно быть 4,7 кОм, то сопротивление переменного резистора R2 может быть 470–620 Ом, а резистора R1 = 3,9- 4,3 кОм. При этом надобность в точной подгонке сопротивления основного добавочного резистора отпадает.
Пользоваться омметром несложно. Всякий раз перед измерениями стрелку омметра надо устанавливать на нуль, замкнув накоротко щупы. Затем, касаясь щупами омметра выводов резисторов, выводов обмоток трансформаторов или других деталей, определяют их сопротивления по градуированной шкале. С течением времени стрелка прибора не
Омметром можно пользоваться как универсальным пробником, например, проверить, нет ли обрывов в контурных катушках, обмотках трансформатора, выяснить, не замыкаются ли катушки или обмотки трансформатора между собой. При помощи омметра легко найти выводы обмоток трансформатора и по сопротивлению судить об их назначении. Омметром можно проверить, не оборвана ли нить накала лампы, не соединяются ли между собой электроды лампы, оценивать качество диодов. С помощью омметра можно также определять замыкания в монтаже или между обкладками конденсатора, надежность контактных соединений и многое другое.
Запомни, как ведет себя омметр при испытании конденсаторов. Если щупами прикоснуться к выводам конденсатора, стрелка прибора отклонится и сейчас же возвратится в положение очень большого сопротивления. Этот «бросок» стрелки, получающийся за счет тока зарядки конденсатора, будет тем большим, чем больше емкость конденсатора. При испытании конденсаторов малой емкости броски тока так малы, что они незаметны, так как зарядный ток таких конденсаторов ничтожно мал. Если при испытании конденсатора стрелка омметра отклоняется до нуля, значит, конденсатор пробит; если же омметр после отклонения стрелки от тока зарядки покажет некоторое сопротивление, значит, конденсатор имеет утечку.
Ты, конечно, обратил внимание на то, что в миллиамперметре, вольтметре и омметре, о принципе работы которых я рассказал, использовались однотипные стрелочные приборы. Невольно напрашивается вопрос: нельзя ли все это объединить в одном комбинированном измерительном приборе? Можно. Получится миллиампервольтомметр — прибор для измерения токов, напряжении и сопротивлений.
Принципиальная схема возможного варианта такого измерительного прибора изображена на рис. 116.
Рис. 116. Схема миллиампервольтомметра
Прибор объединяет в себе шестипредельный миллиамперметр постоянного тока (0,1, 1, 3, 10, 30 и 100 мА), шестипредельный вольтметр постоянного тока (1, 3, 10, 30, 100 и 300 В), однопредельный омметр и пятипредельный вольтметр переменного тока (3, 10, 30, 100 и 300 В). Зажим «—Общ.», к которому подключают один из измерительных щупов, является общим для всех видов измерений. Прибор переключают на разные виды и пределы измерений перестановкой вилки второго щупа: при измерении постоянного тока — в гнезда Х13-Х18, при измерении постоянных напряжений — в гнезда Х7-Х12, при измерении сопротивлений — в гнездо Х6, при измерении переменных напряжений — в гнезда X1-Х5. Пользуясь прибором как миллиамперметром постоянного тока, надо на всех пределах, кроме 0,1 мА, замкнуть контакты выключателя S1, чтобы к шунту Rш подключить микроамперметр РА1.
Сопротивления резисторов и пределы измерений, указанные на рис. 116, соответствуют микроамперметру на ток Iи= 100
Часть прибора, относящаяся только к миллиамперметру постоянного тока (mА_), состоит из микроамперметра РА1, выключателя S1, резисторов R14-R18, образующих шунт Rш, гнезд Х13-Х18 и зажима «-Общ». На любом пределе измерений через микроамперметр течет ток, не превышающий максимальный ток.
Применительно к микроамперметру, использованному в описываемым комбинированном измерительном приборе, я расскажу о расчете шунта и составляющих его резисторов R14-R18. Для этого первый, наименьший предел измерений с шунтом (1 мА) обозначим Iп1, второй (3 мА) — Iп2, третий (10 мА) — Iп3, четвертый (30 мА) — Iп4, пятый, наибольший (100 мА) — Iп5.
Сначала надо определить общее сопротивление шунта первого предела измерений Iп1 по такой формуле:
Rш= Rи/(Iп1/Iи — 1) = 720/(1/0,1–1) = 80 Ом
После этого можно приступить к расчету составляющих его резисторов, начиная с резистора R18 наибольшего предела измерений Iп5 (до 100 мА), в таком порядке:
R18 = (Iи/Iп5)(Rш + Rи) =(0,1/100)(720 + 80) = 0,8 Ом;
R17 = (Iи/Iп4)(Rш + Rи) — R18 = (0,1/30)800 — 0,8 = 1,87 Ом;
R16 = (Iи/Iп3)(Rш + Rи) — R17 — R18 = (0,1/10) 800 — 1,87 — 0,8 = 5,33 Ом;
R15 = (Iи/Iп2)(Rш + Rи) — R16 — R17 — R18 = (0,1/3) 800 — 5,33 — 1,87 — 0,8 = 18,7 Ом;
R14 = (Iи/Iп1)(Rш + Rи) — R15 — R16 — R17 — R18 = (0,1/1)800 — 18,7–5,33 — 1,87 — 0,8 = 53,3 Ом
Так можно рассчитать шунт и для микроамперметра с другими параметрами Iи и Rи, подставляя их значения в эти же формулы.
Теперь о вольтметре постоянного тока V_. В эту часть прибора входит тот же микроамперметр РА1, добавочные резисторы R8-R13, гнезда Х7-Х12 и зажим «—Общ.» (контакты выключателя S1 разомкнуты, чтобы микроамперметр отключить от шунта). Каждый предел имеет самостоятельный добавочный резистор: R8 — для предела «1 В», R9 — для предела «3 В», R10 — для предела «10 В», R11 — для предела «30 В» и т. д. С расчетом добавочных резисторов ты уже знаком.