Юный техник, 2004 № 11
Шрифт:
Медали размещены на специальной подставке из падука — красного дерева ценной породы — и закреплены между двумя прозрачными стеклами таким образом, что создается впечатление, будто они висят в воздухе. Для обрамления награды выбрано специальное музейное стекло, которое позволит сохранить медаль на долгие годы.
«А ВЫ НОКТЮРН СЫГРАТЬ СМОГЛИ БЫна флейте водосточных труб?» — вопрошал некогда поэт. Прозаик-технолог ответит, что это невозможно, поскольку трубы эти должны быть изготовлены из тонкостенного и мягко-упругого материала, который обычно в жилищно-коммунальном хозяйстве не применяется. Еще
В результате труба приобрела как бы человеческий голос, теплое и глубокое звучание. Музыканты эстрадно-симфонического оркестра Ростовской области высоко оценили работу своего земляка, с успехом используют его изобретение в своих выступлениях. Тем более что мастер ныне изготовил еще насадку, позволяющую при желании модернизировать любую трубу. Достаточно насадить камерную полость на раструб, подобно сурдинке, и труба заметно меняет свой тембр. Сейчас мастер по просьбе своих земляков работает над созданием насадок для тромбона и саксофона.
РАССКАЖИТЕ, ОЧЕНЬ ИНТЕРЕСНО…
Сверхзвуковые субмарины
Слышал, что конструкторы работают над созданием подводных лодок, которые передвигаются над дном океана со сверхзвуковой скоростью. Как это может быть? Ведь вода намного плотнее воздуха, а даже в атмосфере полет «на сверхзвуке» не такое уж простое дело.
Андрей Пищиков,
г. Гатчина, Ленинградская область
В середине прошлого века, когда самолеты начали штурм звукового барьера, в судостроении произошла своя революция — появились первые корабли на подводных крыльях. Их создатели, и в первую очередь наш замечательный конструктор В.И. Левков, решили задачу резкого ускорения надводных кораблей следующим образом. «Раз вода создает излишнее сопротивление движению, — рассудили они, — давайте вытолкнем корпус судна из нее в среду, в 800 раз менее плотную. А именно — в воздух»… И теперь такие суда буквально летают над водой, развивая скорость около 100 км/ч. Опираются они лишь на подводные крылья, которые и создают подъемную силу.
Примерно в то же время нашелся в нашей стране и человек, который аналогичным образом решил задачу ускорения движения и подводных лодок. Михаил Меркулов, специалист из Института гидродинамики в Киеве, предположил, что решение проблемы скорости любого подводного объекта лежит в феномене, называемом кавитацией. Термин этот дословно переводится как «формирование пустот». Обозначают же им в данном случае вот какое явление.
Тщательные гидродинамические исследования, проведенные Меркуловым и его предшественниками, показали: при быстром движении тела сквозь жидкость давление ее в различных точках тела становится… меньше. Причем, чем большую скорость набирает тело, тем ниже становится давление. Потому что в данных условиях жидкость
Поначалу к кавитации относились как к явлению, безусловно, вредному: пузырьки, бесконтрольно образовывающиеся в насосах, турбинах и пропеллерах подводных аппаратов, нарушают схему движения потока и снижают КПД двигателя. Более того, иногда они создают ударные волны, способные покалечить корпус корабля или подлодки.
Однако в изобретательском деле давно известен принцип: если не можешь избавиться от какого-то вредного явления, попробуй обратить его на пользу. В данном случае кавитацию постарались превратить в… сверхкавитацию. Оказалось, что при определенных условиях можно из множества маленьких пузырьков получить один огромный пузырь. То есть создать газовую полость, в которой может поместиться весь движущийся объект.
Впервые подобный феномен был описан еще Исааком Ньютоном в 1687 году. Однако реально создавать условия сверхкавитации по своему усмотрению исследователи научились лишь в XX веке. Оказалось, для этого подводный объект должен двигаться со скоростью не менее 80 км/ч. При этом поверхностное трение жидкости почти исчезнет, поскольку аппарат практически полностью окутывает газовая рубашка.
Впрочем, одно дело получить эффект в лаборатории, изучить его, так сказать, под микроскопом, и совсем другое — применить на практике. Первыми это, как уже сказано, удалось сделать Михаилу Меркулову и его коллегам. Советские конструкторы использовали сверхкавитацию прежде всего при создании супербыстрых торпед. Хотя сами по себе торпеды намного меньше подлодок, а движутся быстрее субмарин, пришлось немало потрудиться, прежде чем грозные снаряды начали передвигаться под водой на больших скоростях (см. подробности в «ЮТ» № 1 за 2002 г.).
В данном случае инженеры, во-первых, должны были решить проблему подводного движителя. Обычные винты здесь не работают, так как в воду погружен только нос объекта. В конце концов, конструкторы догадались установить на подводные аппараты… ракетные двигатели. Они ведь обычно работают в вакууме, так что отсутствие воды для них благо, а не помеха в работе.
Во-вторых, нужно было подобрать или даже создать сверхпрочные материалы, которые бы могли предотвратить деформацию носа объекта под воздействием очень высоких давлений.
В-третьих, когда аппарат достигал предельной скорости, образуемая воздушная полость уже не могла охватить всю торпеду — «пузырь» как бы не поспевал за ней; в итоге появились проблемы с устойчивостью. Пришлось пойти на хитрость и создать впереди дополнительную полость, выводя часть выхлопных газов подводной ракеты через нос.
В итоге к 1977 году наши конструкторы создали торпеду «Шквал», способную развивать скорость до 500 км/ч. Слухи о ее существовании просочились за рубеж. Но западные эксперты долгое время не верили им, пока в 1995 году британский военный журнал «Интернейшенл Дефенс Ревю» не подтвердил авторитетно: уникальная разработка существует. А через месяц-другой Москва продемонстрировала один из прототипов «Шквала» на выставке оружия в Абу-Даби.