Юный техник, 2006 № 11
Шрифт:
Единственное объяснение этому явлению может дать квантовая механика. Под действием электрического поля электроны проводника выстраиваются в группы или волны, примерно одинаковые по энергии. Сильнейшее электрическое поле (напряженность его достигала сотен тысяч вольт), создаваемое группой электронов, отрывало от проволоки слой цинка, раздувало его как шар (рис. 2).
Рис. 2. Видно,
При дальнейшем повышении силы тока бусинки разрушались. В этот момент было видно яркое свечение проводника, находящегося внутри каждой из них. По цвету свечения удалось определить температуру проводника. Она оказалась близка к 1200 °C. В промежутках между бусинками проводник, условно говоря, оставался холодным, имея температуру всего 300–400 °C.
Поразительно здесь очень многое. Начнем с того, что ток течет по всему проводнику, но нагревает его лишь местами. Тепло от горячего участка к холодному передается в десятки раз медленнее, чем обычно. Наконец, появление столь высокого электрического поля, надувающего бусинки, тоже полная неожиданность.
Совсем иначе протекает этот процесс в опытах А.М. Марахтанова. В качестве проводника он применил тончайшую металлическую пленку, напыленную на керамическую подложку. Как и в опытах с проволокой, электроны проводника выстраивались волнами, и на нем, чередуясь, возникали горячие и холодные участки (рис. 3).
Рис. 3. Под действием сильных токов на поверхности металлической пленки возникает чередование горячих и холодных участков.
Плотность тока увеличивали. Под конец опыта падение напряжения на проводнике оказывалось в тысячу раз больше, чем можно получить при комнатной температуре. Кинетическая энергия электронов возрастала в миллионы раз. При таких условиях электроны вылетают из кристаллической решетки. Остаются лишь сидящие в узлах положительно заряженные ионы атомов металла. Они, как и положено одноименным зарядам, разлетаются в стороны. Кристалл металла мгновенно взрывается. Причем энергия взрыва металла больше, чем у тринитротолуола и гексагена.
В ходе экспериментов выяснилось, что при помощи электрического поля можно высвободить запас энергии, которым обладают кристаллы многих металлов: вольфрама, свинца, меди, алюминия, железа и их сплавов.
Энергия взрыва превышает энергию вызывающего его импульса во много раз. Так, для алюминия мы получаем энергетический выигрыш в 66 раз, для никеля — в 171, для вольфрама в 2133 раза.
Подробности этих экспериментов можно найти в описании к патенту РФ № 2145147 (7 Н 02 N 3/00, 11/00) «Способ выделения энергии связи из электропроводящих материалов», авторы М.К. и А.М. Марахтановы.
Распад кристаллической решетки одного килограмма железа может дать столько же энергии, сколько запасает свинцовый аккумулятор весом 50 кг. С таким источником электромобиль проедет без остановки около трех тысяч километров. В конце пути на его борту окажется 1 кг железной пыли, которую можно будет переплавить и снова пустить в дело.
Недавно студенты кафедры «Плазменные энергетические установки» МГТУ им. Н.Э.Баумана «развлекались»
Вы можете повторить этот опыт. При разрушении спираль имеет наиболее высокую температуру — 2680 °C — посередине и совсем низкую — 180 °C — в местах крепления к электродам. Между тем температура плавления вольфрама составляет 3400 °C, и она не достигнута. Поэтому, строго говоря, не совсем понятно, отчего спираль все же разрушается.
Вот еще одно из «чудес», которое вы тоже сможете увидеть: из электрода, удерживающего спираль, всегда торчит наружу короткий прямой вольфрамовый волосок — технологический след обрезанной на производстве спирали. Ток по нему вообще не протекает, но вольфрамовый шарик все-таки образуется (рис. 4).
Рис. 4. Холодный вольфрамовый усик, по нему даже ток не течет, а капелька почему-то образовалась…
Как предположил профессор М.К.Марахтанов, причиной этого является не электричество, а создаваемая им теплота. Действительно, свободные электроны могут группироваться, локализовываться в металле под действием не только электрического поля, но и теплового. Только в этом случае необходима большая разность температур между расположенными вблизи точками металла. Тогда тепло совершает работу по перемещению электронов против сил электрического поля ионов кристаллической решетки металла. Возникающие в этот момент силы столь велики, что вслед за этими электронами перемещаются и атомы металла. Именно этим и объясняется образование шариков на холодных участках вольфрамовой проволоки. Происходит квантовая телепортация атомов металла под действием электронных волн.
Для наблюдения этого явления достаточно иметь регулируемый лабораторный автотрансформатор и двухполупериодный выпрямитель, соединенный с ламповым патроном. Лампу возьмите мощностью 60 — 100 Вт и плавно в течение 30–40 секунд повышайте напряжение, пока лампа не перегорит. Опыты проводите в темных очках для газосварки.
А.ИЛЬИН
Фото М. МАРАХТАНОВА
ПОЛИГОН
Очень странный летающий объект
На прошедшей в июне в Москве выставке научно-технического творчества молодежи НТТМ-2006 было немало интересного. Но экспонат, который показали ребята из Детского и молодежного центра «Сокольники», заслуживает особого рассказа.
Посмотрите на рисунок 1. Три соты из фольги, поверху укреплена на изоляторах тоненькая проволочка. Вот и весь… летательный аппарат. Как только к фольге и проволочке приложить высокое напряжение, сооружение взлетает и устойчиво висит примерно в 30–40 см от стола. Он взлетел бы и выше, но высота его подъема намеренно ограничена нитями, прикрепленными к столу кнопками.