Чтение онлайн

на главную

Жанры

За гранью реальности. Объяснение необъяснимого
Шрифт:

Хитроумная схема трех рыцарей, общей дамой сердца коих была Объективная Истина, нацеливалась на основу основ теории неопределенности — может ли частица одновременно обладать определенным положением и определенным импульсом. То есть существовать в классическом смысле этого слова. Мир Тьмы, мир неопределенности, ставящий под сомнение самою физическую реальность, гласил: знать все невозможно! Потому что ничего определенного не существует! Все размыто, искажено. В частности, мы не можем совершенно точно одновременно узнать координаты и импульс элементарной частицы. Либо вы меряете с точностью, где находится частица, и тогда вы не знаете ничего об ее характеристиках (импульсе), либо

вы точно узнаете свойство частицы, но не знаете, где она находится.

Это непредставимо для обычного мира. Если летит пуля, мы в любой момент знаем, где она находится и какова ее скорость. Странно, если бы узнав, где пуля, мы тем самым автоматически закрывали себе знание о ее скорости. И наоборот, узнав скорость, мы полностью теряли бы информацию о ее местоположении. Где ружейная пуля, чья скорость 800 м/с? Как где? На траектории полета!.. А вот и нет, а вот и нет! Нет у нее никакой траектории! И координаты нет. Теперь пуля вполне может оказаться в Антарктиде или на Луне. Возможен вариант: есть точная координата пули на траектории (в 30 см от ружейного ствола), но тогда нет точной скорости. То есть скорость может быть нулевой. Или бесконечной.

Запускаем ракету. Какова ее скорость через секунду после старта? — Десять метров в секунду, товарищ полковник!.. — А где она? — А хрен ее знает! Квантовая механика, товарищ полковник. Теперь уже непонятно.

И прав ведь товарищ полковник в своем справедливом возмущении! Действительно, что это за дурь такая? Не может Родина стрелять вслепую. А как же баллистика? Есть же такая наука — баллистика! И этой науке все равно, какой массы пуля — хоть 9 граммов, хоть тонна, хоть с электрон размером. Подставь в формулы, получишь результат — где пуля и что с ней в данный момент происходит. Увы! В микромире баллистика работать перестает. Как же тогда рассчитывать прицел?

А по вероятности. Есть так называемая волновая функция — она описывает «размазанную в пространстве вероятность» того, что в данной точке может оказаться электрон, вздумай мы его здесь поискать. Это ключевое выражение — «вздумай мы его поискать»! Если бы мы поискать электрон не вздумали, он был бы… где? Вот в ответе на этот вопрос и разошлись Бор с Эйнштейном. Эйнштейн считал, что электрон где-то, в каком-то определенном месте да был бы. Просто мы пока не можем точно рассчитать это место. Поэтому и предсказываем вероятностно. Бор полагал по-другому. Он считал, что, пока мы не интересуемся, где находится электрон, он в определенном месте и не находится. Он действительно размазан в пространстве! И размазанность эта намного превышает диаметр самого электрона. Это как если бы пуля, вылетев из ствола, превращалась в летящее облачко тумана. Электрон как бы летит по всем траекториям сразу. Но! Но если мы проведем замер, то обнаружим частицу на вполне определенной траектории, в конкретной точке. То есть если под «туманную пулю» мы подставим мишень, то в момент удара по мишени пуля тут же локализуется, превращается в обычную твердую пулю, которая делает в мишени маленькую дырку.

Первая мысль от подобного поведения элементарных частиц именно эйнштейновская — на самом деле электрон летит по вполне конкретной траектории, как пуля, просто мы ее не знаем, а можем лишь примерно, вероятностно определить — таков наш пока несовершенный математический аппарат. Второе впечатление от дурного поведения элементарных частиц — головокружительное, и более всего кружится голова от дикости происходящего, когда знакомишься со знаменитым двущелевым экспериментом.

Сейчас я его вкратце опишу. Волны, как вам известно, умеют складываться — и морские, и звуковые, и электромагнитные. Если встречаются две волны в противофазе, они гасят друг друга. А если в одной фазе — усиливают: растет амплитуда волны. Представьте себе набегающую на берег широким фронтом волну. Мы ставим на ее пути плотину с двумя щелями, расположенными неподалеку друг от друга. Через плотину волна не проходит, а через щели — проходит, разбегаясь от щелей двумя конусами в сторону берега. Волновые конусы возле берега встречаются, перекрываясь. И в тех местах, где амплитуды волн получаются синфазными, они складываются, и о берег бьют удвоенные волны. А там, где волны гасят друг друга, берег спокоен.

Такой же эксперимент, проведенный со световой волной, дает на экране (который здесь заменяет берег) так называемую интерференционную картину, то есть картинку сложения волн. Где световые волны складываются, — там на экране яркие полосы света, а там, где вычитаются, — темные полосы тени. Световая зебра.

Такой же эксперимент проводили не только с волнами, но и с частицами — электронами. Если бы электроны были большими, как, например, шарики от подшипников, никакой интерференции не получилось бы: шарики не волны, там нечему складываться — барабанили бы просто в мишень, образуя два пятна попаданий — от каждой щели по одному.

Но в микромире, как вам опять-таки известно, все частицы обладают свойствами волн. И наоборот — волны обладают свойствами частиц. И если двухщелевой эксперимент проводить с электронами, на экране образуется интерференционная картина — электроны ведут себя как волны. Получается зебра.

Когда я учился в школе, я думал, что интерференция электронов получается оттого, что электронов много — одни пролетают через левую щель, другие через правую, а за щелью как-то там складываются, взаимодействуют, и на экране получается интерференционная картина.

Так многие думают. Но это не так. В эксперименте ученые запускали в установку по одному электрону. И наблюдали интерференционную картину! Что это значит? Это значит, что один электрон пролетал одновременно через две щели! И за экраном интерферировал — складывался сам с собой.

Неожиданный вывод, согласитесь. Сознание, которое привыкло относиться к электрону, как к малюсенькому шарику, противится такому поведению шарика. Один шарик не может пролететь сразу через две щели, как одна пуля не может лететь по двум траекториям сразу. Пуля не может, а электрон летит!

Слушайте, а если возле щели поставить какой-нибудь детектор, который определял бы, через какую щель «на самом деле» проскочил этот проныра? Отличная идея! Ставим детектор. Можно поставить два детектора — у каждой щели по одному, можно один — без разницы, ведь если детектор у нас стоит только у одной щели и он не фиксирует пролет электрона, значит, электрон пролетел через другую щель.

Ставим! Фиксируем! Да, электрон пролетает только через одну щель! Либо через правую, либо через левую! Ура! Но вот какой ужас — при этом интерференционная картинка пропадает! То есть как только мы начинаем знать, где пролетел электрон, как только он начинает вести себя в соответствии с нашими ожиданиями (как маленький шарик), так сразу волновая картина на экране пропадает!

Хитрые люди могут спросить: а как мы детектируем электрон — как узнаем, что он пролетел именно через эту щель? Ну, например, ставят фотонный детектор, и по рассеянию света делают вывод. «Ага! — воскликнет читатель, сторонник определенности. — Так вы забомбардировали несчастный электрон фотонами, а после удивляетесь, что он полностью изменил свое поведение! И еще сознание свое приплели зачем-то!»

Да, доля истины в этих рассуждениях есть. Если мы детектируем с помощью фотонов пулю (то есть попросту смотрим на ее полет, ловя глазами отраженные фотоны), то никак, конечно, на пулю мы этим не влияем. Во-первых, фотоны от пули и так отражаются, потому что солнце светит, а во-вторых, что пуле фотон? Меньше, чем слону дробина! А вот электрончик — маленький, ему от фотонов больно. В микромире, чтобы получить информацию, мы воздействуем на объект сравнимыми с ним штуковинами. И, естественно, вносим при этом сильную помеху. Подставьте под пулю не фотоны, а сравнимую с ней вещь — деревянную щитовую мишень, например, и увидите, как повлияет это «измерение» на траекторию и скорость пули.

Поделиться:
Популярные книги

Системный Нуб 2

Тактарин Ринат
2. Ловец душ
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Системный Нуб 2

Чехов книга 3

Гоблин (MeXXanik)
3. Адвокат Чехов
Фантастика:
попаданцы
альтернативная история
аниме
6.00
рейтинг книги
Чехов книга 3

Неудержимый. Книга X

Боярский Андрей
10. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга X

Изгой. Пенталогия

Михайлов Дем Алексеевич
Изгой
Фантастика:
фэнтези
9.01
рейтинг книги
Изгой. Пенталогия

Идеальный мир для Лекаря 8

Сапфир Олег
8. Лекарь
Фантастика:
юмористическое фэнтези
аниме
7.00
рейтинг книги
Идеальный мир для Лекаря 8

Совок 11

Агарев Вадим
11. Совок
Фантастика:
попаданцы
7.50
рейтинг книги
Совок 11

Везунчик. Проводник

Бубела Олег Николаевич
3. Везунчик
Фантастика:
фэнтези
6.62
рейтинг книги
Везунчик. Проводник

На границе империй. Том 9. Часть 5

INDIGO
18. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 5

Бальмануг. Невеста

Лашина Полина
5. Мир Десяти
Фантастика:
юмористическое фэнтези
5.00
рейтинг книги
Бальмануг. Невеста

СД. Том 14

Клеванский Кирилл Сергеевич
Сердце дракона
Фантастика:
фэнтези
героическая фантастика
7.44
рейтинг книги
СД. Том 14

Кодекс Охотника. Книга XV

Винокуров Юрий
15. Кодекс Охотника
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XV

Лишняя дочь

Nata Zzika
Любовные романы:
любовно-фантастические романы
8.22
рейтинг книги
Лишняя дочь

Король Масок. Том 1

Романовский Борис Владимирович
1. Апофеоз Короля
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Король Масок. Том 1

Жандарм 3

Семин Никита
3. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 3