Загадочные явления природы
Шрифт:
Исследования показали, что шаровая молния может существовать очень долго, особенно если она находится в состоянии так называемой черной молнии.Об этой молнии следует сказать особо. Она всегда подразумевалась, но физики не придавали ей особого значения. Более того, не исключено, что черная молния — явление более частое, чем шаровая, но в силу ее черного цвета она не так заметна и не обращает на себя внимание.
Полагают, что шаровая молния образуется во время грозы и какое-то время может существовать в виде черной молнии, то есть молнии, которая не излучает
Есть фотографии черных молний, их подробные описания.
Молнии, шаровая и черная, как бы связаны между собой. Шаровая молния может стать черной, если она угасает, но не распалась полностью. И наоборот, черная молния в любой момент может разгореться и превратиться в пылающий красный или белый шар — шаровую молнию.
Случаи встречи с черной молнией были бы в какой-то степени курьезными, если бы они не были печальными. Просто человек в траве видит какой-то неизвестный «огурец», хочет его сорвать — и объект взрывается. Так, один альпинист нечаянно наступил на черную молнию, и она разорвалась; альпинист получил серьезную травму.
«Гриб» также может выглядеть странным, человек его ударяет ногой, а он тоже взрывается. И не исключено, что ряд рассказов о всякой чертовщине основан на откровениях очевидцев, встретившихся с черными молниями.
На основе систематизации и обработки наблюдений создан образ шаровой молнии и установлены достаточно достоверные ее свойства. На основе физической модели удается дать объяснение различных свойств шаровой молнии, в том числе воспринимаемых часто как субъективные, и описать ее поведение в разных условиях.
Подавляющее большинство наблюдателей показывает, что шаровая молния образуется во время грозы после разряда линейной молнии. Лишь в сравнительно небольшом числе сообщений описываются случаи наблюдения шаровой молнии в ясную погоду. Поскольку молния может образоваться в произвольном участке канала линейной молнии, при разряде между тучей и землей или между тучами, наблюдатель далеко не всегда его видит, поэтому вероятность наблюдения места возникновения шаровой молнии невелика. Сам процесс образования скоротечен, и наблюдатель может видеть только результат этого процесса, когда канал линейной молнии исчезнет спустя некоторое время после разряда.
Шаровая молния, согласно предлагаемой модели, образуется на участке канала линейной молнии в месте развития перетяжечной неустойчивости. В последующих ударах при достаточно большой силе тока, когда магнитное давление тока превысит давление частично ионизированного газа, плазменный шнур сжимается, и на нем возможно образование перетяжек. Оценки показывают, что в одной перетяжке может образоваться шаровая молния небольшого диаметра, примерно в 50 см, поскольку разряды с большими токами очень редки. Таким образом, энергия шаровой молнии определяется не только силой тока в разряде, но и числом ячеек, участвующих в процессе слияния магнитных конфигураций.
Согласно данным опроса, лишь 10 % наблюдателей из 150 опрошенных утверждают в своих сообщениях, что они видели момент зарождения шаровой молнии. Из них в 45 случаях она зародилась вблизи канала молнии, а в остальных 105 случаях появилась из различных металлических предметов (розеток, радиоприемников, металлических батарей и других предметов). В целом это соответствует выводу о невозможности наблюдения процесса образования шаровой молнии. Имеется большое количество сообщений о том, что шаровая молния притягивается к незаземленным металлическим предметам, вызывает, короткие замыкания в электро- и радиоаппаратуре, которые сопровождаются звуковыми и световыми эффектами, привлекая внимание наблюдателя. По этой причине наблюдатель часто обнаруживает шаровую молнию в непосредственной близости от этих предметов или когда она находится в контакте с ними.
Важным фактором, играющим существенную роль при образовании шаровой молнии, является насыщение воздуха парами воды, которое обычно во время грозы достаточно велико. Пары воды необходимы не только для образования термоизолирующей оболочки шаровой молнии, но и для придания ей соответствующего веса. Плотность вещества шаровой молнии из-за высокой температуры значительно ниже плотности воздуха, и ее вес полностью определяется весом водяной оболочки. Только в случае заметного веса пленки шаровая молния под действием силы тяжести может опускаться на землю.
Как правило, шаровая молния имеет достаточно четкую поверхность, отделяющую ее от окружающего воздуха, т. е. имеется типичная граница разделения двух различных веществ. Водяная пленка, благодаря поверхностному натяжению, способна при низких температурах обеспечить четкую границу, с ростом температуры пленки (до 100 °C) граница будет размываться.
Форма шаровой молнии близка к сферической, что подтверждают сообщения до 90 % наблюдателей. Остальные наблюдатели утверждают, что ее форма совпадает с эллипсоидной или грушевидной. Лишь незначительное число наблюдателей (порядка долей процента) указывают на тороидальную и другие формы. Очевидно, что форма шаровой молнии стремится к сферической, поскольку этой форме соответствует расход минимума энергии. Стремление шаровой молнии сохранить сферическую форму связано не только с фактом существования у нее поверхностного натяжения. По мере остывания ее форма приближается к сферической. На форму молнии могут оказывать воздействие электрическое поле и сила тяжести. Так, под действием силы тяжести жидкость с поверхности пленки может стекать в нижней ее части, придавая молнии грушевидную форму.
В принципе, по мере угасания она может иметь кратковременно и тороидальную форму.
Время жизни шаровой молнии определяется временем диссипации магнитной энергии, запасенной в ней. В плазме с радиусом 10 см время жизни плазмоида составит около 10 секунд. Это время согласуется с временем, установленным наблюдателями.
Полная энергия шаровой молнии равна сумме магнитной, электростатической, поверхностной и тепловой энергий. Приведем наиболее интересную оценку, сделанную на основании следующего сообщения:
«Летом 1977 г. в г. Фрязино Московской области преподаватель и группа школьников, находившихся в классе на втором этаже, увидели «мохнатый» светящийся шар диаметром примерно 5 см, который приблизился к наружному оконному стеклу. В стекле образовалось небольшое круглое отверстие со светящимися краями красного цвета. Постепенно диаметр отверстия увеличился до 3–4 см. Вслед за этим шаровая молния ярко вспыхнула и исчезла с громким звуком. В этот момент преподаватель, державший в руках включенный эпидиаскоп, почувствовал удар током. Второе (внутреннее) стекло оконной рамы не пострадало. Время, в течение которого молния проплавила стекло, наблюдатели оценивают в 5 секунд».