Чтение онлайн

на главную

Жанры

Шрифт:

Общая годовая мировая продукция фотосинтеза на суше и в океанах оценивается (конечно, сугубо ориентировочно) в 80 миллиардов тонн, что примерно в 14 раз превышает количество добываемого ежегодно топлива (а в пересчете на калорийность в 7–8 раз больше). Конечно, цифры эти надо считать приблизительными, так как определить фотосинтетическую продукцию океанов и суши, не связанную с сельскохозяйственной деятельностью человека, довольно непросто. Однако сейчас ясно выявляется, что фотосинтетическая продукция океанов, во всяком случае, не превышает таковой на суше, хотя поверхность океанов в 4 раза больше. Остановимся на продуктивности лесов, где можно сделать более определенную оценку.

Общая площадь,

занимаемая лесами, составляет примерно 4 · 109 га = 4 · 107 км2, что равно примерно одной трети земной суши. Величина к.п.д. фотосинтеза у деревьев довольно высока.

Так, продукция фотосинтеза для северных лесов составляет 8 тонн на гектар, а для тропических — значительно больше. Расчет ведется не только на деловую древесину, но и на сучья, корни и некондиционные деревья. Будем считать, что в среднем весь этот мировой прирост составляет 10 тонн с гектара. В таком случае все леса дают ежегодно 4 · 1010 тонн, то есть 40 миллиардов тонн древесины, что в 7 раз больше, чем добываемое ежегодно топливо по тоннажу, и в 4 раза больше по калорийности.

Само собой разумеется, что сжигать лес, являющийся ценным строительным материалом, сырьем для получения целлюлозы и многих других органических веществ нерационально. Однако сжигание только отходов леса уже обеспечит снабжение энергией всего лесного хозяйства. К сожалению, подавляющая часть прироста древесины вовсе не используется, а гниет из-за отсутствия правильной эксплуатации, вывоза леса из северных и тропических районов. Наладить уход за лесами и их эксплуатацию является необходимым мероприятием ближайшего будущего.

На первый взгляд приведенные цифры возможного использования фотосинтеза растений кажутся довольно большими. Однако при сравнении их с энергией солнечного излучения, падающего на сушу Земли, они оказываются ничтожными. Так, определяя к.п.д. перехода солнечной энергии в химическую энергию пищи и кормов при указанных ранее высоких урожаях (15 тонн сухого вещества с гектара), мы убеждаемся, что этот к.п.д. составит всего 1,5 процента, а при современных средних урожаях — еще раз в 5 меньше. (К.п.д. фотосинтеза определяется отношением калорийности урожая — в сухом весе — к количеству солнечной радиации на гектар, выраженной в тех же единицах, например в ккал/га. Биологи, обычно определяют к.п.д. по отношению лишь к части видимого солнечного спектра, являющейся активным началом фотосинтеза с энергией, равной половине энергии всего солнечного спектра. Отсюда принятый нами к.п.д. 1,5 процента соответствует «биологическому» к.п.д., равному 3 процентам.)

Такое низкое значение к.п.д. объясняется в первую очередь тем, что в ранних периодах вегетации, когда растения малы, листья покрывают лишь малую часть пашни и солнечная энергия в большей своей части падает на землю, а не на растения. Наоборот, при полном развитии растений одни листья затеняют другие и в основном работают лишь верхние листья. Это мешает физиологическим функциям растений, а также понижает к.п.д. фотосинтеза, и вот почему: при малой освещенности к.п.д. фотосинтеза составляет 10 процентов, но падает с увеличением интенсивности. При больших интенсивностях облучения выход вещества вообще перестает зависеть от интенсивности света, и скорость фотохимического процесса будет лимитироваться активностью ферментов, скоростью диффузии исходных веществ в растении и др.

Учитывая такое своеобразие к.п.д. фотосинтеза, было бы очень выгодно создать условия равномерного распределения солнечной энергии по всем листьям растений с таким расчетом, чтобы, увеличивая поверхность листьев, работать с уменьшенной интенсивностью света, а значит, с большим к.п.д. По-видимому, подобные условия осуществляются на кукурузных полях в течение 2–3 недель перед уборкой и на плантациях сахарного тростника для растений второго года. Своеобразие этих культур, как и многих других тропических трав, заключается в том, что их длинные листья расположены под малым углом к стволу. Это позволяет, особенно в южных районах, солнечным лучам проникать глубоко в толщу посева. При этом отраженный от листьев и проходящий сквозь них свет создает в толще всего посева равномерное, хотя и малоинтенсивное, освещение. Такие условия обеспечивают получение высокого к.п.д. фотосинтеза, гораздо большего, чем при непосредственном падении солнечных лучей на плотный верхний слой листьев. В указанных стадиях развития при хороших агротехнических условиях к.п.д. для названных растений составляет 7 процентов от всей падающей солнечной энергии.

Рассматриваемый нами эффективный к.п.д. фотосинтеза зависит от разнообразных условий (формы и расположения листьев, ухода за посевами и пр.), а не только от самого аппарата фотосинтеза.

Оказалось, что соответствующие значения начального к.п.д. и характер кривых не точно одинаковы для разных растений. Но в общем они распадаются на две группы. К одной относятся все растения средней полосы, а к другой — растения, относящиеся к так называемым тропическим травам. Для первых к.п.д. при малых интенсивностях составляет в среднем 8 процентов, а для вторых — 12 процентов, что соответствует «биологическому» к.п.д. 16 и 24 процента. Это обстоятельство также является одной из причин повышенной урожайности кукурузы, сахарного тростника и им подобных растений.

* * *

Итак, солнечная энергия в соединении с агрокультурными мероприятиями и селекцией способна обеспечить человечество питанием на сто-двести лет вперед даже при большом увеличении населения.

Поставим теперь вопрос: не сможем ли мы за счет энергии Солнца добывать в достаточном количестве и электроэнергию для нужд промышленности и быта, учитывая постепенное уменьшение запасов горючих ископаемых, накопленных в течение многих миллионов лет за счет той же солнечной энергии? А быть может, удастся получать органические вещества чисто химическим путем, за счет солнечной энергии вне растений?

При космических полетах и особенно при исследовании поверхности Луны (а впоследствии и Марса) применяются полупроводниковые солнечные батареи, которые работают с к.п.д., превышающим 10 процентов. Нет сомнений, что в будущем ученым удастся повысить к.п.д. преобразования солнечной энергии в электрическую, скажем, до 20 процентов. Кстати, в этих батареях к.п.д. не уменьшается при увеличении интенсивности солнечной энергии в противоположность тому, что имеет место при фотосинтезе в растениях.

В принципе при дальнейшем удешевлении полупроводниковых материалов не исключена возможность использования подобных батарей и на поверхности Земли, покрывая ими большие пространства суши. Суточные, месячные и годовые изменения интенсивности излучения, а значит, и электрического тока от батарей можно было бы выровнять с помощью аккумулирования электрической энергии батарей в виде продуктов электролиза. При этом можно было бы выбрать такой электролиз, продукты которого давали бы возможность переводить их химическую энергию в электрическую с к.п.д. около 100 процентов в топливных или обычных электрических элементах. От этих элементов мы могли бы получать ток уже постоянной мощности.

Поделиться:
Популярные книги

Последняя Арена 4

Греков Сергей
4. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 4

На изломе чувств

Юнина Наталья
Любовные романы:
современные любовные романы
6.83
рейтинг книги
На изломе чувств

Para bellum

Ланцов Михаил Алексеевич
4. Фрунзе
Фантастика:
попаданцы
альтернативная история
6.60
рейтинг книги
Para bellum

Ротмистр Гордеев 2

Дашко Дмитрий
2. Ротмистр Гордеев
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Ротмистр Гордеев 2

Новый Рал

Северный Лис
1. Рал!
Фантастика:
фэнтези
попаданцы
5.70
рейтинг книги
Новый Рал

На границе империй. Том 3

INDIGO
3. Фортуна дама переменчивая
Фантастика:
космическая фантастика
5.63
рейтинг книги
На границе империй. Том 3

Вечная Война. Книга VII

Винокуров Юрий
7. Вечная Война
Фантастика:
юмористическая фантастика
космическая фантастика
5.75
рейтинг книги
Вечная Война. Книга VII

Live-rpg. эволюция-3

Кронос Александр
3. Эволюция. Live-RPG
Фантастика:
боевая фантастика
6.59
рейтинг книги
Live-rpg. эволюция-3

Смерть может танцевать 3

Вальтер Макс
3. Безликий
Фантастика:
боевая фантастика
5.40
рейтинг книги
Смерть может танцевать 3

Законы Рода. Том 7

Flow Ascold
7. Граф Берестьев
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Законы Рода. Том 7

Неудержимый. Книга III

Боярский Андрей
3. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга III

Весь цикл «Десантник на престоле». Шесть книг

Ланцов Михаил Алексеевич
Десантник на престоле
Фантастика:
альтернативная история
8.38
рейтинг книги
Весь цикл «Десантник на престоле». Шесть книг

Релокант. Вестник

Ascold Flow
2. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант. Вестник

Мымра!

Фад Диана
1. Мымрики
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Мымра!