Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.
Шрифт:
Сильное взаимодействие, которое описывается теорией, называемой квантовой хромодинамикой (КХД), является последним из взаимодействий Стандартной модели, которое мы можем объяснить с помощью обмена калибровочными бозонами. Это взаимодействие также было открыто только в прошлом веке. Сильные калибровочные бозоны называются иначе глюонами, так как они передают взаимодействие как некий клей [99] , связывающий вместе сильно взаимодействующие частицы.
99
По-англ. glue', отсюда название — «глюон». — Прим. пер.
В 1950-е и 1960-е годы физики открыли одну за другой много частиц. Отдельным частицам были присвоены названия букв греческого алфавита, например, (пион), (тета) и (Дельта).
Действительно, все адроны были намного массивнее электрона. Большей частью они были сравнимы по массе с протоном, масса которого в 2000 раз больше массы электрона. Невероятное многообразие адронов было загадкой, пока физик Мюррей Гелл-Манн [100] не высказал в начале 1960-х годов гипотезу, что многие адроны не являются фундаментальными частицами, а сами состоят из частиц, которые он назвал кварками.
100
И Джордж Цвейг, хотя его работа никогда не была опубликована.
Слово «кварк» было взято Гелл-Манном из романа «Поминки по Финнегану» Джеймса Джойса: «Три кварка для мистера Марка! Ему уж точно немного достанется на барке. И все его богатство ему уж ни к чему» [101] . Насколько я могу понять, все это имеет очень малое отношение к физике кварков, не считая двух вещей: кварков три, и их трудно понять [102] .
Гелл-Манн предположил, что существуют три разновидности кварков [103] , которые называют сейчас верхний (u), нижний (d) и странный (s), и многочисленные адроны соответствуют многим возможным комбинациям связанных друг с другом кварков. Если его гипотеза верна, то все адроны должны закономерно разделяться на предсказуемые группы. Как часто случается, когда предлагаются новые физические принципы, Гелл-Манн на самом деле не верил в существование кварков. Тем не менее его предположение было довольно смелым, так как в это время были открыты только некоторые из предсказываемых адронов. Поэтому для Гелл-Манна стало большой победой открытие недостающих адронов и подтверждение гипотезы кварков, что проложило ему путь к получению Нобелевской премии по физике 1969 года.
101
Чтобы хоть немного пояснить приведенную цитату, дадим краткую справку. Главного героя романа «Поминки по Финнегану» (1939 г.) зовут Хэмфри Чимпден Эрвикер, и по ходу романа он перевоплощается во множество других лиц, в том числе, в Финна, Марка и двух своих сыновей Шема и Шауна (у него еще есть дочь Изольда). Приведенный отрывок относится к тому месту романа, где главный герой засыпает и ему чудится, что он король Корнуэллский Марк, который послал своего племянника, рыцаря Тристана, на свадебном корабле (барке) за невестой короля Марка Изольдой. Тристан и Изольда полюбили друг друга. Чайки, вьющиеся над барком, издеваются над обманутым королем Марком и поют шуточную и довольно двусмысленную песенку, начало которой приведено выше. Следуем заметить, что данный перевод очень приблизителен, так как роман Джойса трудно переводим на другие языки и построен на словотворчестве. Судя по дальнейшим строкам песенки, можно думать, что слова «три кварка» означают, что король Марк был обманут трижды. В немецком языке слово «кварк» (буквально, «творог»; см. ниже) имеет в разговорной речи смысл «чепуха», «ерунда». Гете употребил это слово, вложив его в уста Мефистофеля в первой части «Фауста». — Прим. пер.
102
Кварк является также сортом немецкого сыра. Название было бы вдвойне подходящим, если бы относилось к кусочкам творога, блуждающим в сыре, как кварки внутри адрона. Однако мои немецкие друзья сказали, что это не так.
103
Сейчас мы знаем, что их шесть.
Хотя физики согласились с тем, что адроны состоят из кварков, прошло целых девять лет после этой гипотезы, прежде чем адронная физика была объяснена в рамках сильного взаимодействия. Парадоксально, что последним объясненным взаимодействием было сильное взаимодействие, отчасти из-за его колоссальной интенсивности. Сейчас мы знаем, что сильное взаимодействие настолько велико, что фундаментальные частицы, например кварки, испытывающие сильное взаимодействие, всегда связаны друг с другом, так что их трудно изолировать и, следовательно, изучать. Частицы, испытывающие сильное взаимодействие, не могут скитаться в одиночку, без компании.
Каждая разновидность кварков имеет три типа. Физики шутливо пометили разные типы цветами, и иногда называют типы кварков красным, зеленым и голубым. Цветные кварки всегда обнаруживаются связанными вместе с другими кварками и антикварками в нейтральную по цвету (бесцветную) комбинацию. Это те комбинации, в которых «заряды» сильного взаимодействия кварков и антикварков компенсируют друг друга, аналогично тому, как разные цвета при смешивании дают белый свет [104] . Существуют два типа бесцветных комбинаций. Стабильные адронные конфигурации содержат либо объединенные друг с другом кварк и антикварк, либо три связанных вместе кварка (без антикварков). Например, в частицах, называемых пионами, кварк спаривается с антикварком, а в протоне и нейтроне связаны вместе три кварка.
104
Отсюда происходит название «квантовая хромодинамика», от греч. — цвет.
В адронах «заряд» сильного взаимодействия между кварками сокращается, во многом аналогично тому, как заряд положительно заряженного протона сокращается с зарядом отрицательно заряженного электрона в атоме. Но в отличие от атома, который можно ионизовать без труда, очень трудно разбить на составные части такие объекты, как протон и нейтрон, которые необычайно сильно связаны глюонами — переносчиками сильного взаимодействия.
Теперь мы почти готовы вернуться к открытию кварков, метафорически описанному в ревизионистской сказке Афины. Протон и нейтрон состоят из комбинаций трех кварков, в которых взаимно сокращается заряд, связанный с сильным взаимодействием. Протон содержит два u– кварка и один d– кварк — разные типы кварков с разными электрическими зарядами. Так как электрический заряд u– кварка равен +2/з, а электрический заряд d– кварка равен -1/3, электрический заряд протона равен +1. А нейтрон содержит один u– кварк и два d– кварка, так что его электрический заряд равен 0 (сумма зарядов -1/3, -1/3 и +2/3).
Кварки можно представить как твердые точечноподобные объекты, находящиеся в большом рыхлом протоне. Они внедрены в протон или нейтрон, как горошины, запрятанные под матрасами. Но как и в случае с прыгающей принцессой, ставящей себе синяки при ударе о горошину, энергичный экспериментатор может выстрелить по протону электроном большой энергии, который испускает фотон, рикошетом отскакивающий от кварка. Это совсем не похоже на фотон, отскакивающий от большого мягкого тела, точно так же, как альфа-частица в опыте Резерфорда, отскакивающая от жесткого ядра, сильно отличается от альфа-частицы, отскакивающей от размазанного положительного заряда.
Эксперимент по глубоко-неупругому рассеянию, выполненный Фридманом, Кендаллом и Тейлором в Станфордском центре линейного ускорителя (SLAC), продемонстрировал существование кварков, зарегистрировав указанный эффект. Экспериментаторы показали, каким образом ведут себя электроны, рассеивающиеся на протонах, тем самым продемонстрировав первое экспериментальное свидетельство реального существования кварков. За это открытие Джерри Фридман и Генри Кендалл (они были моими коллегами в Массачусетском технологическом институте), а также Ричард Тейлор получили Нобелевскую премию по физике 1990 года.
Когда кварки рождаются в столкновениях частиц высоких энергий, они еще не связаны в адроны, но это не означает, что они изолированы. У них всегда есть сопровождающая их свита из других кварков и глюонов, обеспечивающая нейтральность всей комбинации по отношению к сильному взаимодействию. Кварки никогда не возникают как свободные объекты без сопровождения, а всегда экранированы многими другими сильно взаимодействующими частицами. Вместо отдельного изолированного кварка экспериментатор регистрирует множество частиц, состоящих из кварков и глюонов и летящих примерно в одном направлении.
В целом группы частиц, состоящие из кварков и глюонов и согласованно двигающиеся в определенном направлении, носят название струй. Как только образуется струя частиц большой энергии, она напоминает канат, в том смысле, что она никогда не исчезает. При разрезании каната вы получаете два новых куска каната. Аналогично, когда струи разделяются за счет взаимодействий, их отдельные куски могут образовать новые струи, но никогда не удастся разделить их на отдельные, изолированные кварки и глюоны. Стефен Сондхайм скорее всего не думал об ускорителях частиц высоких энергий, когда писал стихи для песни «Ракет» [105] в «Вестсайдской истории», но его слова прекрасно подходят к струям сильно взаимодействующих частиц. Энергичные сильно взаимодействующие частицы всегда держатся вместе. «Они никогда не одиноки… Они — под защитой».
105
«Джет» (jet) в английском языке означает и «струя», и «ракета». — Прим. пер.