Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.
Шрифт:
После безвременной кончины Шерка в 1980 году Шварц упорно продолжал работу над теорией струн. Он сотрудничал с другим (возможно, единственным) верящим в эту идею, британским физиком Майклом Грином, и вместе они анализировали следствия теории суперструн. Шварц и Грин обнаружили удивительное свойство суперструны: она имеет смысл только в десяти измерениях, из которых девять пространственных и одно временное. При всех других числах измерений возникают неприемлемые колебательные моды струны, приводящие к явно бессмысленным предсказаниям, таким как отрицательные вероятности процессов, включающих моды струны, которые не должны существовать. В десяти измерениях все нежелательные моды взаимно устраняются. При любом другом числе измерений теория струн
Чтобы сказанное стало яснее, заметим, что струна сама по себе вытянута вдоль единственного пространственного измерения и путешествует во времени. Это те два измерения, которые изучал Рамон, когда он впервые открыл суперсимметрию. Но точно так же, как мы знаем, что точечноподобный объект, не имеющий протяжения ни в одном пространственном измерении и, следовательно, имеющий нулевое число пространственных измерений, может перемещаться в трех пространственных измерениях, струна, имеющая одно пространственное измерение, может перемещаться в пространстве с много большим числом измерений, чем сама обладает. Струны могут, вероятно, перемещаться в трех, четырех и более измерениях. Вычисления показали, что правильное число измерений (включая время) равно десяти.
Слишком большое число измерений не было новым свойством суперструны. Более ранняя версия теории струн (не содержавшая фермионов или суперсимметрии) имела двадцать шесть измерений — одно временное и двадцать пять пространственных. Но в ранней версии теории струн были другие проблемы, например тахион. С другой стороны, теория суперструн была достаточно обещающей, чтобы над ней поработать.
Несмотря на все это, теорией струн практически пренебрегали до 1984 года, когда Грин и Шварц продемонстрировали поразительное свойство суперструны, которое убедило многих других физиков, что они идут по правильной дороге. Благодаря этому открытию, а также двум другим достижениям, которые мы вскоре рассмотрим, теория струн заняла основное место в потоке исследований по физике.
Работа Грина и Шварца была посвящена явлению, известному как аномалии. Как следует из названия, когда аномалии были впервые открыты, они стали большим сюрпризом. Первые физики, работавшие над квантовой теорией поля, принимали как данное то, что любая симметрия классической теории будет также сохраняться ее квантово-механическим расширением, т. е. более полной версией теории, включающей также эффекты виртуальных частиц. Но оказалось, что это не всегда так. В 1969 году Стивен Адлер, Джон Белл и Роман Джекив показали, что даже когда классическая теория сохраняет симметрию, квантовомеханические процессы с участием виртуальных частиц иногда эту симметрию нарушают. Такие нарушения симметрии называются аномалиями, а теории, содержащие аномалии, называются аномальными.
Аномалии очень важны для теории взаимодействий. В гл. 9 мы видели, что успешная теория взаимодействий требует существования внутренней симметрии. Эта симметрия должна быть точной, в противном случае невозможно исключить нежелательные поляризации калибровочного бозона, и теория взаимодействий не будет иметь смысла. Поэтому симметрия, связанная с взаимодействием, должна быть свободна от аномалий: сумма всех нарушающих симметрию эффектов должна равняться нулю.
Это мощное ограничение на любую квантовую теорию взаимодействий. Например, мы знаем сейчас, что это есть одно из самых убедительных объяснений существования в Стандартной модели и кварков, и лептонов. По отдельности виртуальные кварки и лептоны приводят к аномальным квантовым вкладам, которые нарушают симметрии Стандартной модели. Однако сумма квантовых вкладов от кварков и от лептонов равна нулю. Это чудодейственное сокращение и есть то, что скрепляет конструкцию Стандартной модели, — и кварки, и лептоны необходимы для того, чтобы взаимодействия в Стандартной модели обрели смысл.
Аномалии могли стать проблемой для теории струн, которая, помимо прочего, включает и взаимодействия. В 1983 году, когда теоретики Луис Альварес-Гауме и Эдвард Виттен показали, что такие аномалии возникают не только в квантовой теории поля, но и в теории струн, казалось, что это открытие отправит теорию струн в архив интересных в далекой перспективе, но пока неактуальных идей. Казалось, что теория струн не может сохранять требуемые симметрии. В атмосфере скептицизма, порожденного возможным существованием аномалий в теории струн, Грин и Шварц совершили сенсационное открытие, показав, что теория струн может удовлетворить ограничениям, которые нужны для того, чтобы избежать аномалий. Они вычислили квантовый вклад во все возможные аномалии и показали, что для определенных взаимодействий аномалии чудесным образом дают в сумме нуль.
Одна из причин, по которой результат Грина и Шварца был таким удивительным, состояла в том, что теория струн допускает много неприятных квантовомеханических процессов, каждый из которых мог бы породить нарушающие симметрию аномалии. Но Грин и Шварц показали, что сумма квантово-механических вкладов во все возможные нарушающие симметрию аномалии в десятимерной теории суперструн равна нулю. Это означало, что многие сокращения, требуемые в вычислениях теории струн, действительно происходят, более того, эти сокращения происходят в десяти измерениях, т. е. в том самом числе измерений, которое, как уже известно, является особым для теории суперструн. Сокращение аномалий было мощным аргументом в пользу десятимерной суперструны.
Кроме того, работа Грина и Шварца пришлась на очень удачное время. Физики безуспешно искали теории, которые могли бы расширить Стандартную модель, включив туда суперсимметрию и гравитацию, так что они были готовы рассмотреть что-то новое. Они не могли просто проигнорировать открытие Грином и Шварцем суперсимметричной теории, которая потенциально могла воспроизвести все частицы и взаимодействия Стандартной модели. И хотя дополнительная структура теории струн добавляла проблем, суперструна преуспела там, где другие более экономные теории потерпели крах.
Следующие два важных открытия закрепили за теорией струн место в анналах физики. Одно было сделано Принстонской группой — Дэвидом Гроссом, Джеффом Харви, Эмилем Мартинесом и Райаном Ромом, которые в 1985 году построили теорию, названую гетеротической струной. Это название происходит от греческого слова , что в ботанике означает «сила гибрида», термин, используемый по отношению к гибридным организмам, обладающим свойствами, превосходящими свойства их предков. В теории струн колебательная мода может двигаться вдоль струны либо по часовой стрелке, либо против часовой стрелки. Название «гетеротический» использовалось потому, что волны, движущиеся налево, рассматривались не так, как волны, двигавшиеся направо, и, следовательно, теория включала более интересные взаимодействия, чем уже известные нам версии теории струн.
Открытие гетеротической струны было дальнейшим подтверждением того, что взаимодействия, которые, как обнаружили Грин и Шварц, были свободными от аномалий и допустимыми в десяти измерениях, были несомненно особыми. Они нашли несколько наборов взаимодействий, включая все те, которые, как уже было показано, возможны в теории струн, а также другие наборы взаимодействий, которые никогда ранее не считались (теоретически) частью теории струн. Взаимодействия гетеротической струны были теми самыми новыми взаимодействиями, для которых Грин и Шварц показали, что они свободны от аномалий. Было показано, что вместе с гетеротической струной это дополнительное множество взаимодействий, которое может включать взаимодействия Стандартной модели, является не только правильной возможностью теории струн, но и может быть явно реализовано. Физики рассматривали гетеротическую струну как реальный прорыв в попытке связать теорию струн со Стандартной моделью.