Занимательно об энергетике
Шрифт:
Преобразовать солнечную энергию в тепло заманчиво, но гораздо лучше сразу получать электрический ток. Фотоэффект в полупроводниках был открыт еще в 1876 году, в химическом элементе селене. О применении фотоэлементов в солнечной энергетике мечтал советский академик А. Иоффе, основатель физико-технического института Академии наук СССР. В этом институте в 30-е годы советские исследователи создали серно-таллиевые фотоэлементы с рекордным для тех времен КПД в 1 процент. Американские физики Пирсон и Фаулер в 1952 году создают кремниевые фотоэлементы с p-n-переходами. Первый успешно работающий солнечный элемент был продемонстрирован в 1953 году,
Третий советский ИСЗ и американский «Авангард-1» (из серии ИСЗ «Эксплорер») — соответственно май и март 1958 года — были первыми космическими аппаратами, снабженными солнечными батареями.
И немудрено. В космосе солнечные лучи — естественный источник энергии. И привлекательный, ибо не требует топлива. Поэтому-то голубоватая чешуя кремниевых пластинок и покрывала часть поверхности третьего советского ИСЗ.
Но энергия, необходимая для питания приборов и для обеспечения быта космонавтов, быстро росла. И тут обнаруживается уязвимое место солнечной энергии: плотность ее потока мала. Следовательно, для орбитальных станций требуются солнечные батареи с общей площадью во многие сотни квадратных метров! Трудно поставить такой «парус» над космическим кораблем, но, по-видимому, еще труднее найти для него место во время вывода корабля на орбиту. Эту задачу пытались решить двумя способами.
В первом варианте солнечные элементы должны были укладываться на поверхность длинного нейлонового мешка. Он, как пожарный рукав, накручивался на барабан.
После выхода на орбиту рукав, полагали, автоматически будет развертываться, заполняясь газом, подаваемым под давлением, и батарея начнет работать.
Вторая конструкция была проще. На Земле солнечные батареи складывались в гармошку — в космосе такая гармошка разворачивалась.
Пока обсуждали, подсчитывали, прикидывали эти варианты, неожиданно нашелся и более мощный, и более компактный, и обладающий еще рядом других привлекательных свойств источник электроэнергии для космических аппаратов — топливные элементы. (О них мы еще будем подробно говорить в следующих главах.) Эти электрохимические источники тока и стали в космосе основным энергетическим подспорьем. Правда, лишь временно. Ибо потребляемые в космосе мощности продолжают быстро расти. Растет и продолжительность полетов. Поэтому в будущем преимущество солнечных батарей, не требующих никакого топлива и окислителя, может стать неоспоримым.
Земля
То, что кажется трудным в космосе, легко реализовать на Земле. Большие площади для солнечных батарей? Их вам предложит в изобилии любая пустыня — пустыни вроде бы самой Природой созданы для гелиоустановок.
Казалось бы, ибо тут возникает новое обстоятельство — экономика дела. В космосе проблемы «дорого», «не по карману», «слишком расточительно» — таких упреков не было.
Солнечные батареи были одним из самых дорогих источников энергии, но не надо забывать: в космосе солнечные батареи требовались почти что в единственном экземпляре — это не массовое производство!
Не то на Земле. Здесь в вопросах использования источников энергии физики и энергетики часто вступают в спор. Физику может казаться, что если открыт способ преобразования, например, солнечной энергии в электричество с достаточно высоким КПД, то это, собственно, уже решает все проблемы.
У энергетика же немедленно возникает вопрос: а сколько стоит такое устройство? Вопрос этот, может
В площадях для солнечных электростанций гелиотехников не ограничивают. Нужны сотни гектаров пустыни? — берите, не жалко! Но ведь при этом потребуются груды монокристаллического кремния — исходного материала для солнечных фотопреобразователей. Вот тут-то будет загвоздка: цена такого кремния еще совсем недавно приближалась к цене чистого золота. Но технология изготовления кристаллов кремния неуклонно совершенствуется и упрощается. Фотоэлементы становятся все дешевле.
Теперь более подробно о площадях, потребных для солнечной энергетики, если бы она вдруг вошла «в моду». Размеры площадей зависят от величины КПД фотопреобразователя. Расчеты физика-теоретика академика М. Леонтовича показали, что максимально возможный КПД солнечного пребразователя энергии довольно велик — 93 процента. (Максимальный же КПД, скажем, двигателя внутреннего сгорания лишь 30 процентов!)
Однако пока реальные КПД кремниевых батарей обычно лежат в пределах 10—16 процентов.
Так вот, несложная арифметика показывает, что при КПД в 10 процентов (типичное значение для кремниевых фотоэлементов, освоенных в серийном промышленном производстве для нужд космической энергетики), чтобы произвести всю электроэнергию, необходимую США, скажем, на уровне 1974 года, потребовалось бы покрыть фотоэлементами 12 с половиной тысяч квадратных километров поверхности земного шара.
Это лишь доли процента от территории США — один только магистральные автомобильные дороги в этой стране занимают существенно больше места: 50 тысяч квадратных километров.
Для того чтобы полностью удовлетворить сегодняшние потребности СССР в энергии, нужен квадрат пустыни со стороной примерно в 100 км. Это будет меньше 1 процента той территории, которая занята у нас под сельскохозяйственные пашни, что также меньше площади, занятой угольными шахтами, нефтяными промыслами и нефтепроводами.
Да, места для солнечной энергетики требуется не так-то уж много. Однако с экономической точки зрения (большие количества кремния, металлов) реализация подобных проектов затруднительна.
Для удовлетворения нужд Большой Энергетики все же проще жечь уголь, ту же нефть, строить новые атомные электростанции.
Конечно, понятия «дорого» и «дешево» довольно относительны.
На площадях, ограниченных сороковыми параллелями, проживает около 80 процентов населения планеты. И количество солнечной энергии, которое можно было бы получить в этих районах, стоило бы сравнить не с годовой производительностью современной электростанции — около 3х109 киловатт-часов, — а с работой, совершенной парой волов — 1000 киловатт-часов в год.
Полезно также сопоставить годовую стоимость получения солнечной энергии и затраты на 25 тонн фуража, необходимого для питания этих волов!
Все это так. Критерии при подходе к энергетике у индустриальной державы и у развивающейся страны, конечно, разные. И тем не менее пока гелиотехники все же предпочитают не расстилать полупроводниковые ковры.
Электроэнергия от солнечных батарей в 100(!) раз дороже, чем поступающая с тепловых электростанций. Поэтому-то экономика вроде бы напрочь закрывает солнечным батареям путь в практику.