Занимательное волноведение. Волненя и колебания вокруг нас
Шрифт:
Как и многие из тех, кто изучает колебания загадочных волн нейронного возбуждения, профессор У задается вопросом: что если волны играют решающую роль в разгадке извечной тайны — как миллиарды взаимосвязанных нейронов, каждый из которых по отдельности напоминает простенький «биологический выключатель», могут порождать такие сложные процессы, как способность чувствовать, мыслить? Даже если в случае с крысой все мыслительные процессы сводятся к тому, как бы добраться до съестного в буфете вашей кухни.
Ну что, вернемся к трем типам волн?
Второй тип — продольные волны. Это тот случай, когда колебания совершаются не
Потому как эти маленькие пахари, без которых ни одному саду не цвести, передвигаются в почве, сокращая и расслабляя мышцы от начала к концу тельца. В том месте, где возникает мышечное напряжение, тельце червя сжимается и уплотняется, цепляясь за почву крошечными щетинками. Уплотнившаяся часть червя волнообразно продвигается по тельцу — и червь движется вперед. Движения сегментов тела червя, прорывающего в земле ход, характеризуются волнообразными колебаниями не из стороны в сторону — «змейкой», а вперед-назад, параллельно направлению движения червя.
Продольные волнообразные сокращения мышц дождевого червя сильно отличаются от поперечных колебаний двигающейся змеи. Но некоторые змеи используют и продольные волны. Происходит это тогда, когда они подкрадываются к добыче, стремясь остаться незамеченными, либо в том случае, когда их вес слишком велик, и они не в состоянии скользить по земле, извиваясь из стороны в сторону.
Одна из таких необычных змей, использующих при передвижении волны дождевого червя, — гигантский шестиметровый иероглифовый питон. Тяжеловесный питон двигается вперед благодаря мельчайшей ряби продольных волн, проходящих по его туловищу от головы до хвоста. Этот способ передвижения характерен и для удавов обыкновенных, которые тоже не из худеньких. Способ передвижения дождевого червя еще называют прямолинейным из-за того, что использующие его крупные змеи медленно продвигаются вперед по прямой линии, сокращая и расслабляя мышцы в змеином «танце живота».
В том месте, где мышцы сокращаются, бугрясь, чешуйки змеиного брюха начинают слега топорщиться. И этими сотнями «коготков» змея цепляется за почву — совсем как дождевой червь щетинками. Волна мышечных сокращений и расслаблений проходит по всей длине брюха — змея медленно двигается вперед, отталкиваясь от почвы чешуйками, которые сцепились с землей.
Некоторые змеи, неспособные скользить, извиваясь из стороны в сторону, проявляют чудеса изобретательности — подбираясь во время охоты поближе к жертве, они всем своим видом как бы говорят: «Не обращай на меня внимания, я всего лишь сухая ветка». Для прямолинейного передвижения неважно, насколько туловище змеи массивно, имеют значение лишь сильная мускулатура и дряблая кожа. Нам, людям, в этом видится противоречие: разве могут руки при накачанных бицепсах быть дряблыми?
Кажется, будто работа брюшных мышц, сокращения и расслабления которых образуют продольную волну, требует невероятных усилий, особенно если змея весит прилично. Однако на деле прямолинейное передвижение крайне экономично — мышцы напрягаются едва заметно. Гигантский иероглифовый питон при этом расходует всего двадцать калорий в день — это
9
Можно предположить, что иероглифовый питон, заглотнув крупную добычу — газель, крокодила или, скажем, какого-нибудь подростка, не нуждается в пище целый год.
Думаю, вам интересно будет узнать, что кора больших полушарий головного мозга у вас и у крысы не слишком различается по своей структуре. И раз крошечные спиральные волны скользят по поверхности мозга засыпающего грызуна, вполне возможно, что такие же микроскопические завихрения формируются и в вашей коре, когда вы лежите в кровати. Однако вы чувствуете: сон никак не идет — в голове крутится навязчивый мотивчик, скажем, «Ты прекрасна» Джеймса Бланта. В таком случае вам всего-то и надо, что привести в действие крошечные волны деполяризации. Если удастся хотя бы немного их расшевелить, заставить покружиться над волнообразными складками серого вещества, они выведут неокортекс из-под стимулирующего контроля таламуса и тем самым избавят вас от этой дурацкой песенки.
Вы скажете: такой уровень контроля над собой невозможен. Однако современный метод нейробиологической обратной связи позволяет не только наблюдать электрическую активность мозга, но и управлять ею. Хотите — верьте, хотите — нет, но сделать это можно, сидя за компьютерной игрой и используя одну лишь силу мысли. Представьте управление событиями на экране без джойстика, кнопок и прочих штуковин — всего-навсего парой прикрепленных к голове маленьких позолоченных электродов, которые улавливают электрические сигналы мозга, двигающие человечков на экране. При наличии соответствующей аппаратуры вы контролируете процесс, учась изменять ритм импульсации нейронов.
Впрочем, едва ли стоит мечтать о таком подарке под новогодней елкой. Компьютерные игры на аппарате довольно примитивные, они придуманы не для развлечения, а для выявления или, вернее, установления обратной связи с ритмичными электрическими импульсами, обычно скрытыми в вашей голове. Как только вы увидите их, научитесь ими управлять.
Но к чему вам все это? А вот к чему: если вы, не дай бог, страдаете эпилепсией или, что тоже неприятно, синдромом дефицита внимания, если разучиваете особенно трудное произведение для выступления в консерватории, ну или, скажем, вознамерились поймать пенальти в футбольном матче на чемпионате мира.
В 1924 году немецкий ученый Ганс Бергер открыл электроэнцефалографический (ЭЭГ) метод регистрации мозговой активности, обнаружив регулярную ритмичную пульсацию мозга. Он прикрепил посеребренные электроды к голове своего пятнадцатилетнего сына Клауса и измерил электрические сигналы, испускаемые нейронами головного мозга.
Когда один нейрон передает другому электрический за ряд, между ветвлениями одного нейрона и телом другого возникает синапсическая связь. И хотя прикладываемые к голове электроды, представлявшие собой металлические диски, были слишком грубы, чтобы уловить единичный импульс нейрона, первые нейробиологи, в том числе и Бергер, обнаружили, что они все же отмечают электрические импульсы в несколько тысячных вольт, возникающие в результате общей активности тысяч нейронов, или мозговых клеток, находящихся прямо под электродами в коре больших полушарий головного мозга.