Занимательное волноведение. Волненя и колебания вокруг нас
Шрифт:
Однако этого не происходит, и все благодаря рефракции. На мелководье волны бег замедляют, и любая волна, направляющаяся к суше под углом ко все поднимающемуся дну, в конце пути, у самого берега, скорость теряет. В это время она разворачивается и накатывает на берег — что называется, в лоб.
Интересно, если бы волны накатывали не только перпендикулярно, вы бы это заметили? Возможно, не сразу, но уж точно почувствовали бы — что-то здесь не так. Большинство из нас — неважно, наблюдаем мы за волнами или нет — феномен рефракции во внимание не принимает, мы считаем его чем-то само собой разумеющимся. Что нам с того, что волны при движении с разной скоростью в разных средах меняют свое направление? Тот факт, что именно рефракцией объясняется движение волн к берегу перпендикулярно кромке воды, кажется нам чем-то незначительным; едва ли мы вообще замечаем, что
Конечно, наблюдатель за волнами может ни о чем таком и не задумываться, а просто наслаждаться прибоем. В конце концов, на мой взгляд, это одна из лучших форм медитации. Однако пытливый наблюдатель стремится выявить связи, установить параллели, найти сходства между самыми разными типами волн — некоторые волны видны невооруженным глазом, например, волны на пляже, другие невидимы, например, волны звуковые. Возможно, для многих из нас волновая природа мира слишком уж эфемерна, чтобы в полной мере ее осознавать, однако она — в основе всего: стоит вам только присмотреться, как вы начнете замечать волны повсюду.
Итак, мы добрались до Третьего (и последнего) закона волны.
То, каким образом препятствие влияет на волну, зависит в основном от размеров препятствия относительно длины волны. Намного меньшее препятствие оказывает на волну ничтожное влияние. Получается, дифракция звуков разных типов, встречающих на своем пути самые разные препятствия, происходит по-разному. Например, деревья, заборы и припаркованные машины гораздо крупнее высокочастотных волн длиной в два сантиметра, но намного меньше низкочастотных волн длиной в десятки сантиметров. Когда вы стоите у светофора в ожидании зеленого света, шум проносящихся туда-сюда машин слышится вам какофонией звуков разных частот: от высокочастотного шороха колес по гравию до низкочастотного гудения грузовика. Однако когда между вами и проезжей частью возникают препятствия в виде, скажем, стен, вы слышите только низкочастотные звуки тарахтящих моторов — высокочастотные до вас не доходят.
Обо всем этом стоит помнить, выбирая место для своей стереосистемы. Низкочастотные динамики, «басы», можно поставить где угодно, хоть под столом — длинные звуковые волны легко обогнут препятствия из плотной среды, а также углы. Высокочастотные динамики, «пищалки», наоборот, стоит ориентировать так, чтобы между динамиками и вами не было никаких препятствий — только в таком случае звуки с короткой волной будут хорошо слышны.
Именно явление дифракции позволяет вам определить источник звука — повинуясь законам дифракции, волны огибают и такой плотный предмет, как ваша голова.
Чтобы определить источник звука, можно воспользоваться одним из двух методов, в зависимости от длины огибающих волн. Высокочастотные волны с относительно небольшой длиной — меньше ширины вашей головы — не смогут с легкостью обогнуть голову и достичь направленного в другую сторону уха. Определяя направление этих писклявых звуков, ваш мозг сравнивает интенсивность звука, достигающего каждого уха, и судит о направлении по тому, насколько звук в одном ухе громче звука в другом ухе. А вот низкочастотные звуки с большой длиной волны запросто достигают обоих ушей, поскольку размеры вашей головы для них относительно малы — волны огибают ее, не создавая акустическую тень. В случае с низкими звуками мозг сравнивает малейшую разницу, но уже во времени, которое звук затрачивает, чтобы достичь каждого уха. Распространяясь от источника, волны достигают другого уха чуть позже, поскольку им приходится вашу голову огибать. И «чуть позже» здесь не просто пустой, ничего не значащий речевой оборот, так характерный для англичан — запаздывание в самом деле составляет какие-то несчастные 0,6 миллисекунды.
Благодаря поразительной точности, с которой наш мозг распознает разницу во времени прохождения и интенсивности звуков, мы, люди, превосходно улавливаем направление источника звуков. Однако справедливо это в том случае, когда звуки распространяются в горизонтальной плоскости. [20] Воспринимая идущие прямо на нас звуки, мы способны определить их источники, отстоящие
20
Однако размытые края объясняются не только дифракцией. Поскольку солнце не является точечным источником света, у краев тени появляются переходные тона — когда часть солнца загорожена, а часть — нет.
Для сверчков острый слух этой мухи имеет фатальные последствия. В ночное время самка мухи, пользуясь своим превосходным слухом, улавливает брачный призыв самца сверчка. Под покровом темноты она опускается где-нибудь неподалеку, а потом совершает резкий бросок. Прежде, чем несчастный сверчок сообразит, что к чему, муха успевает отложить прямо на него или в непосредственной близости сотни своих личинок. Одна или несколько личинок — крошечные черные червячки меньше миллиметра длиной — зарываются в тело сверчка. Неделю личинка питается и растет, после чего выбирается из тела временного хозяина в новый для нее мир. Вам может показаться, что сверчок такому избавлению
Любой ныряющий со снаряжением дайвер подтвердит — наши способности определять направление звуков под водой весьма посредственны. В воде звук распространяется раза в четыре быстрее, чем в воздухе, и разница во времени достижения звуком каждого уха гораздо менее различима. только рад. Но насладиться свободой он не успевает — тут же разваливается на части, погибая.
Впрочем, хотя муха Ormia и распознает источник звука с большой точностью, переплюнуть в этом деле нас, людей, ей не под силу. Или все же под силу? Расстояние между нашими ушами — около 15 см, в то время как у мухи — всего 0,5 мм. Способность самки мухи Ormia находить сверчка по звуку поражает гораздо больше, чем острота нашего слуха, ведь муха такая маленькая! Расстояние между ее барабанными перепонками ничтожно мало, и разница во времени достижения волнами одного и другого уха — порядка 0,00000005 секунды; на этом фоне наши 0,0006 выглядят бледновато. До чего же чуткая мушка!
Мы отлично определяем направление звуков в горизонтальной плоскости, а вот когда источник находится выше или ниже, все уже не так хорошо. Поскольку уши у нас на голове расположены симметрично, по обе стороны, при повороте головы в горизонтальной плоскости расстояние от источника звука до каждого нашего уха окажется одинаковым — неважно, ниже источник или выше. То есть звуковые волны будут достигать обоих ушей за одно то же время. Впрочем, это и не страшно, потому как чаще всего мы имеем дело с двумя пространственными измерениями.
Иное дело — совы-сипухи. Для них умение определить направление источника звука, распространяющегося в вертикальной плоскости, жизненно важно. И хотя совиное зрение в два раза чувствительнее к свету, чем у человека, оно не особенно-то помогает птицам, когда те ищут в темноте маленького грызуна, пробегающего среди травы и листьев, а то и под снегом. Поэтому вместо того, чтобы приглядываться, сова прислушивается. Чтобы ей, сидящей на ветке, понять, откуда именно доносится шорох лапок этой самой мышки, она должна с легкостью распознавать направление звука, идущего и в вертикальной, и в горизонтальной плоскостях. Вот почему, как вы, может быть, замечали, уши у сипух расположены на голове асимметрично: слуховое отверстие левого уха примерно на сантиметр выше слухового отверстия правого.