Зеленая революция
Шрифт:
Кроме того, агротопливо вызвало нарекания как косвенный катализатор повышения цен на продовольственные продукты. В какой степени разведение энергетических культур способствует повышению цен на продукты питания, вопрос спорный. Но никаких сомнений, что выделение пахотных земель под продукцию для биобензина сокращает объемы производства продовольственных продуктов, особенно в неурожайные годы, что влечет за собой повышение цен. Именно это и случилось в 2012 г. По данным Детлефа Вихрова, руководителя Центра продовольственной безопасности при Университете Хоэнхайма, потребление зерновых в производстве агротоплива с 2006 г. возросло более чем вдвое. В 2010 г. на производство топлива пошло около 6 % мирового урожая зерновых [161] . По другим источникам, примерно 2 % мировых пахотных земель занято энергетическими культурами. С учетом растущего дефицита земель и повышающегося спроса на продукты питания это заметная величина. Всемирный банк даже объясняет повышение цен на продукты питания как раз производством агробензина. Так что биобензин невольно стал примером того, как чаемое благословение может обернуться проклятием. А ведь казалось, что агротопливо будет выгодно всем — аграриям, инвесторам, строителям, да еще и полезно для окружающей среды.
161
См. http://www.sueddeutsche.de/wirtschaft/nahrungsmittel-statt-biosprit-gefangen-in-der-ethanol-falle-1.1438888-2.
В июле 2012 г.
162
См. http://www.leopoldina.org/uploads/tx_leopublication/201207_Stellungnahme_Bioenergie_kurz_de_en_final.pdf.
Эксперты полагают, что с учетом растущего спроса на продукты питания борьба за земли обострится. По этой причине в Китае запрещено производство этанола и бутанола из продовольственных растений, содержащих сахар и крахмал.
Трезвая оценка потенциала биогенных энергоносителей подводит к выводу, что задача к 2050 г. покрыть в Германии потребность в необработанной энергии биологическими ресурсами на 23 %, не нанеся при этом вред окружающей среде, невыполнима. В качестве альтернативы эксперты предлагают форсированное освоение возобновляемых источников энергии, что требует меньше площадей при более высокой отдаче. Однако они считают целесообразным комбинировать производство продовольственных продуктов, промышленную переработку растительных отходов и их применение в энергетической сфере.
И все-таки вегетарианство способно значительно больше понизить экологические нагрузки, чем биогенные источники энергии: «Уменьшение доли продуктов животного происхождения в рационе человека, видимо, потребует меньше биомассы для производства кормов и разгрузит сельское хозяйство. Выбросы парниковых газов в секторе сельского хозяйства, судя по всему, сократятся. Это, по всей вероятности, будет способствовать охране климата в большей степени, чем основные способы производства биоэнергии». Несколько смущает осторожность данной рекомендации — «видимо», «судя по всему», «по всей вероятности». Существует сотня убедительных причин, чтобы есть меньше мяса, и среди представителей молодого поколения число вегетарианцев растет. Однако исходить нужно все же из того, что в ближайшие десятилетия спрос на мясо будет повышаться. Также маловероятно, что крупные производители биомассы, такие как Бразилия, США и южноазиатские экспортеры пальмового масла приостановят производство агробензина. Поэтому в обозримом будущем биоэнергия неизбежно будет порождать неразрешимые конфликты интересов. Полный отказ от добычи газа, электричества и топлива из биомассы невозможен. Однако нужно попытаться разрядить конфликтную ситуацию в сфере продовольственной безопасности и улучшить экологический баланс производства агротоплива. Для этого необходимы технологические инновации, законодательная база для введения соответствующих стандартов и международные конвенции. Межправительственная группа экспертов по изменению климата оценивает глобальную перспективу биоэнергии намного выше. В начале 2012 г. она представила объемный «Специальный доклад о возобновляемых источниках энергии и ослаблении глобальных климатических изменений» («Special Report on Renewable Energy Sources and Climate Change Mitigation»), который ученые из Академии Leopoldina назвали «слишком оптимистическим» [163] .
163
Edenhofer, Ottmar et al. (Hrsg.), «Renewable energy sources and climate change mitigation. Special Report of the Intergovernmental Panel on Climate Change (IPCC)», Cambridge, 2012.
Итак, несмотря на все претензии к нынешнему состоянию производства энергии из аграрного сырья, не следует принципиально его отвергать. Здесь важнее всего, какое сырье используется в качестве энергоносителей, как оно производится, каковы расходы на переработку? Нужно поставить перед собой цель не использовать для энергодобычи продукты, которые могут служить продовольствием или кормами. Субсидирование производства биобензина и биогаза из злаков — это западня. На пахотных землях нужно в первую очередь выращивать сельскохозяйственные растения, из которых производится продовольственная продукция. На втором месте — растительное сырье для фармацевтической, химической и текстильной отраслей. Производство энергии из биомассы нужно поместить лишь в самый конец комплексной перерабатывающей цепочки. Общий экологический баланс в итоге должен быть положительным. Под таким углом зрения сегодня многие способы производства биоэнергии нельзя назвать устойчивыми. Но последнее слово еще не сказано. Если мы, чтобы понизить выбросы CO2, хотим как можно скорее вытеснить ископаемые источники энергии из процесса производства электричества, отопления и транспортного сектора, было бы рискованно полагаться исключительно на солнечную и ветровую энергию. Энергию из биомассы несложно хранить, в каком бы агрегатном состоянии она ни находилась — твердом, жидком или газообразном. Децентрализованные электростанции, работающие на биомассе или биогазе, тоже просты в эксплуатации. В этом смысле они идеально дополняют солнечные батареи и ветрогенераторы, которые вырабатывают электричество непостоянно и стабилизируют электроснабжение и состояние распределительных сетей. Это преимущество может сохраняться по крайней мере при наличии надежных технологий, позволяющих аккумулировать экоэлектричество, и в комплексной системе электроснабжения, поступающего из разветвленных сетей возобновляемых источников энергии.
Биотопливо может способствовать сокращению выбросов углекислого газа и в авиации. С учетом стремительного роста числа воздушных перевозок (авиатранспорт уже долгое время расширяется в среднем примерно на 5 % в год в мировом масштабе) этот вопрос имеет большое значение для климатической политики. Биокеросин должен заменить ископаемое горючее. Основой для него могут служить гидрированные растительные масла — рапсовое, пальмовое, ятрофное. Ятрофу можно выращивать и в засушливых саваннах. Она не требует много воды, а поскольку растение еще и ядовито, химическая защита ей тоже не нужна. Можно подумать и о том, чтобы добывать керосин из богатых жирами водорослей. Специалисты полагают, что биокеросин может добиться первенства на рынке не раньше 2015 г.; первый пробный полет на биодизеле осуществила авиакомпания Air New Zealand в январе 2009 г. Авиакомпании Lufthansa и KLM на некоторых пассажирских рейсах добавляют в горючее 50 % биокеросина. Бразильский самолетостроительный завод Embraer предлагает самолеты, летающие на алкоисе (биоэтаноле второго поколения) [164] . Airbus, ведущие европейские авиакомпании, Еврокомиссия и европейские производители биотоплива договорились начиная с 2020 г. производить 2 млн т биотоплива в год для воздушного флота [165] . Важнейшую роль при производстве этих видов горючего также играет экологический баланс. Истребление влажных тропических лесов или агропромышленное разведение сои и кукурузы ради производства авиабензина равнозначно тушению пожара при помощи бензина. Ввиду ограниченного потенциала для устойчивого производства агротоплива в среднесрочной перспективе было бы разумно зарезервировать его за авиацией, в то время как наземный транспорт продолжать переводить на электричество.
164
См. http://de.wikipedia.org/wiki/Biokraftstoff.
165
Susanne Kilimann: «Benzin aus der Biotonne». В: Zeit Online от 12 июля 2011 г.
Во избежание разного рода негативных последствий производства топлива и биогаза из сельскохозяйственных растений ученые в настоящее время активно экспериментируют с биотопливом второго поколения. Сюда относятся целлюлозный этанол, биометан и биокеросин. Если при производстве агротоплива первого поколения используется небольшая часть растительной массы (плоды или семена), то при производстве агротоплива второго поколения она перерабатывается уже почти целиком, что делает процесс намного эффективнее. Для производства одного и того же количества биотоплива требуется значительно меньше земли, воды, удобрений и т. д. Еще одно преимущество заключается в том, что необходимая биомасса либо поступает из отходов сельского хозяйства и промышленности, либо для ее выращивания можно использовать не самую плодородную почву, не вытесняя, таким образом, продовольственную отрасль. Сырьем для целлюлозного этанола могут служить лесная тонкомерная древесина, отходы деревоперерабатывающей промышленности, быстрорастущие плантационные деревья, такие как тополь и эвкалипт, а также солома и камыш. Целлюлоза составляет большую часть растительной биомассы, однако процесс ее получения при помощи специального коктейля из микроорганизмов и ферментов достаточно дорогостоящий. Если удастся наладить этот процесс в промышленных масштабах, топливо на основе целлюлозы по сравнению с его предшественником, агротопливом, сможет на порядок улучшить климатические показатели [166] . Соответствующие опыты уже проводятся на экспериментальном оборудовании. Сырьевой основой служат органические отходы, отходы сельского хозяйства и лесоводства, а также травы, выращиваемые на неплодородных землях. Так человечество пытается уладить конфликт между «тарелкой» и «баком».
166
Вайцзеккер и др. Фактор пять. Формула устойчивого роста.
Третий, еще более футуристический вариант — производство топлива, биогаза и водорода на основе водорослей. Биомасса водорослей на единицу площади значительно выше, чем у наземных растительных энергоносителей. Их можно выращивать в открытых водоемах или закрытых биореакторах; необходимый для этого CO2 можно отводить с электростанций или промышленных предприятий. Солидные компании уже инвестируют в разработки топлива на основе водорослей. Так, например, ExxonMobil совместно с Synthetic Genomics Incorporated вложили в проект по производству топлива из водорослей 600 млн долларов. А американская авиакомпания Boeing уже заявила о намерении провести ряд пробных полетов на данном виде горючего. Концерн RWE на экспериментальном оборудовании одной из угольных ТЭС в Нижней Саксонии исследует возможность очищения газообразных отходов при помощи микроводорослей. После десульфуризации при помощи дымовых газов установку размером 600 м2, в которой плавают водоросли, наполняют соленой водой. Под воздействием фотосинтеза микроводоросли растут, преобразуя CO2 в кислород [167] . Содержащиеся в водорослях углеводы при помощи микробов перерабатываются в этанол или нефть. До сих пор, однако, не было разработано ни одной промышленной установки. Слишком высоки затраты, особенно на очистку топлива.
167
«Kraftwerk l"asst Abgas durch Algen filtern». В: Handelsblatt Online от 6 ноября 2008 г.: http://www.handelsblatt.com/technologie/energie-umwelt/umwelt-news/CO2-reduzierung-kraftwerk-laesst-abgas-durch-algen-filtern/3049646.html.
Бионика: учиться у природы
Зачем эволюция одела зебру африканских саванн в черно-белую шкуру? Едва ли это было эстетической прихотью природы. И в самом деле, мы видим сколь простую, столь и эффективную систему охлаждения: темные полосы абсорбируют солнечный свет, а белые его отражают. Вследствие разницы температур (до 20 °C) воздух циркулирует, обеспечивая охлаждающий эффект. Помимо этого полосатая раскраска служит для маскировки и защиты от насекомых. Но здесь нам интересен принцип пассивного охлаждения воздуха. Шведский архитектор Андерс Нюквист, первопроходец в области экологической архитектуры, использовал черно-белую раскраску внешних фасадов и крыш при строительстве зданий, не нуждающихся в искусственном отоплении и охлаждении, а регулирующих температурный режим самостоятельно, что позволяет экономить значительный объем энергии и средств в сфере эксплуатации зданий. Это всего лишь один пример «обучения у природы», главного принципа бионики. У истоков этой дисциплины стоит Леонардо да Винчи, попытавшийся применить полученные при изучении полета птиц знания для конструкции летательных аппаратов. Мощный толчок бионике придали компьютерные расчеты и междисциплинарное взаимодействие. Ее успехи уже давно вошли в нашу жизнь: застежки-липучки, самоочищающиеся поверхности и покрытия, аэродинамические кузова, облегченные конструкции самолетов и поездов, несущие конструкции, имитирующие костные структуры, — всему этому мы научились у природы.
Бионика — сочетание биологии и технологии. Полуофициальное определение, данное в 1993 г. Союзом немецких инженеров, звучит так: «Бионика как научная дисциплина занимается технической реализацией конструктивных, методологических и эволюционных принципов, на которых базируются биологические системы». Все больше институтов и компаний работают над вопросом, как перевести на язык новых технологий и продукции, решения, предложенные биологией. Только в Германии исследовательское сообщество Biokon объединяет более 70 университетов и научно-исследовательских институтов, а также ученых, работающих в этой сфере [168] . Мы стоим в начале пути, где нас ждут открытия, которые могут быть сделаны при условии лучшего понимания биологических организмов и систем. В этом отношении бионика соревнуется с массовым исчезновением животных и растений под воздействием грубого вмешательства человека в природу — кто кого. Подсчитано, что ежедневно вымирает более 100 по большей части неизученных видов. При этом мы теряем не поддающийся точному исчислению потенциал, который можно было бы использовать в медицине, продовольственной отрасли, при производстве биологического сырья и т. д. На сегодня изучена лишь малая часть биологического богатства Земли. В этом многообразии таится неисчерпаемый потенциал для разработки близких к природе способов производства будущего, опирающихся на синергию человека и природы. За миллиарды лет эволюция создала вещества, структуры, процессы обмена веществ, которые в соответствующих экологических условиях функционируют безупречно. При этом речь идет не об изолированном рассмотрении отдельных организмов, а о более глубоком понимании системных процессов в биологическом мире: оптимальное соотношение затрат и приобретений, высокая приспособляемость к меняющимся условиям окружающей среды, самоорганизация сложных систем и симбиотические связи между отдельными живыми существами и средой их обитания.
168
См. www.biokon.net — множество интересных сведений.