Чтение онлайн

на главную

Жанры

Земля и космос. От реальности к гипотезе
Шрифт:

Можно с ходу откинуть мысль, что это шутка машиниста, поскольку подобное происходит со всеми поездами и всеми машинистами, и столь нелепая шутка просто невозможна. Кроме того, если два человека слушают с разных точек наблюдения, то все равно при приближении звук имеет более высокий тон, чем при удалении.

Австрийский физик Кристиан Иоган Доплер в 1842 году попытался объяснить этот эффект с точки зрения природы самого звука.

Звук, как тогда полагали, — это волновое явление, которое воздействует на ухо человека благодаря чередующимся зонам сжатия и разрежения при распространении через среду, по которой волна перемещается. Расстояние от одной области сжатия до следующей называется длиной волны — и может быть показано, что чем короче длина волны, тем выше тон, и, соответственно, чем длиннее длина волны, тем тон ниже.

При 0 °C звук распространяется со скоростью около 330 м/с. (На протяжении всей этой главы я хочу использовать «метры в секунду» в качестве единицы скорости исключительно по собственной прихоти. Если вам больше нравится «миль в час», просто помните, что 1 м/с равен примерно 1/ 4 мили/ч. Таким образом, 330 м/с равны 752 миль/ч. — Примеч. авт.) Это означает, что каждая область сжатия движется от источника звука во всех направлениях со скоростью 330 м/с.

Теперь предположим, что свисток производит постоянный звук с такой длиной волны, что каждую секунду производится 330 зон сжатия — эта длина волны равна ми выше среднего до на пианино. Через секунду после начала свиста появится 330 зон сжатия, первая из которых продвинется на 330 метров, тогда как остальные ровно распределятся между ней и свистком. Легко видеть, что расстояние между зонами сжатия будет ровно 1 метр, а это значит, что длина волны звука равна 1 метру.

Но предположите, что свисток размещен на паровозе, который приближается к вам со скоростью 33 м/с, что составляет 1/ 10скорости звука.

Ко времени, когда первая волна сжатия преодолеет 1 метр со своей стартовой точки и начнется испускание второй волны, паровоз пройдет вперед на 0,1 метра. Таким образом, когда появляется вторая волна сжатия, она будет на расстоянии всего 0,9 метра от своей предшественницы, — и это же явление будет происходить с каждой последующей волной сжатия.

Другими словами, если свисток издает звук с длиной волны в 1 метр, когда паровоз относительно вас стоит неподвижно, то при движении поезда длина волны становится 0,9 метра при приближении к вам со скоростью 33 м/с. (Можно легко заметить, что длина волны станет еще короче, если вы будете приближаться быстрее.)

Длина волны 0,9 метра равна частоте 330/0,9, или 367 колебаний в секунду, что почти эквивалентно фа-диезу.

Все будет происходить совершенно иначе, если паровоз начнет двигаться от нас. Тогда, когда первая волна сжатия преодолеет 1 метр к вам и начнется испускание второй волны, паровоз пройдет 0,1 метра от вас и длина волны станет 1,1 метра. Частота будет 330/1,1, или 300 колебаний в секунду, что почти точно соответствует ноте ре.

Тогда мы можем сказать, что свисток паровоза, который обычно издает звук ми, звучит как фа-диез, приближаясь на обычной скорости умеренно быстрого экспресса, и что, миновав наблюдателя, он внезапно меняет звучание на ре.

Итак, тон связан с относительным движением наблюдателя и паровоза. Это может показаться на первый взгляд странным. Но если паровоз приближается и волны сжатия располагаются ближе друг к другу, то нельзя ли нам что-нибудь сделать с наблюдателем? Если вы начнете двигаться в том же направлении, что и паровоз, и с той же скоростью, то волны сжатия, сдвинутые ближе друг к другу из-за движения паровоза, как бы раздвинутся друг от друга, когда они достигнут ваших ушей. И если вы и поезд двигаетесь с одной и той же скоростью, это раздвижение полностью компенсирует сжатие волны. Вы услышите нормальный тон, точно так же, как если бы вы и свисток были неподвижными.

Однако это рассуждение Доплера (приведенное выше) было поначалу лишь простым теоретизированием. Тем не менее оно давало программу для опытов. Теория Доплера связывала скорость звука, скорость источника звука и тон звука совершенно однозначным образом — и необходимо было только, используя соответствующие приборы, провести эксперимент, который бы показал, в самом ли деле все параметры звука связаны между собой соотношениями, установленными Доплером.

Чтобы провести такой эксперимент, Доплер в 1844 году взял в аренду вагон-платформу и некоторую часть железнодорожного пути. На вагоне-платформе он разместил трубачей, попросив их производить указанную ноту, не меняя ее тона, когда платформа минует наблюдателя с абсолютным слухом. Наблюдатель заметил предсказываемое изменение тона; на основании скорости звука и скорости вагона-платформы Доплер произвел необходимые расчеты и обнаружил, что услышанное наблюдателем изменение высоты тона соответствует тому, какое было предсказано теорией. Это изменение тона в зависимости от скорости с тех пор называют доплеровским эффектом.

Доплер сразу увидел, что его теория может быть применима не только к звуку, но и к любому другому волновому явлению. Свет, к примеру, состоит из крошечных волн, и, если источник света, излучающий лишь одну длину волны, приближается к вам, ясно, что для неподвижного наблюдателя длина волны должна укоротиться, а частота увеличиться. Если источник удаляется, волна удлиняется и частота уменьшается.

Каждый раз, когда длина волны изменяется, свет меняет свой цвет. Видимый цвет занимает определенную полосу частот: самые длинные частоты представляет красный, далее идут в порядке уменьшения длин волны оранжевый, желтый, зеленый, синий и фиолетовый (спектр радуги является прекрасным примером).

Тогда, если удаляющийся источник света излучает волны определенной длины, длина этих волн больше, чем была бы, будь источник неподвижным. Его цвет сдвинулся бы в направлении красного. Если же источник света приближается, его цвет сдвигается в направлении фиолетового.

Тогда мы можем сказать, что удаляющийся источник света сопровождается «красным смещением», а приближающийся свет — «фиолетовым смещением». Я считаю, что «красное смещение» — это очень расплывчатый термин. Он звучит, словно красный цвет смещается или что цвет смещается в красный. Неверно ни то ни другое. Поскольку в случае, если источник удаляется, любой цвет любой длины волн будет смещаться по направлению к красному, нам следует назвать это явление «смещением в красную сторону». Обратное явление следует назвать «смещением в фиолетовую сторону» — или, если это звучит слишком нелепо, можно использовать также выражение «смещение в синюю сторону». (Но это я пишу только из любви к точности. Я и дальше буду использовать термин «красное смещение». — Примеч. авт.)

Но теперь, когда мы решили, что доплеровский эффект применим к свету совершенно так же, как к звуку, то, используя простую логику, можем мы немного поиграть в науку и проверить теорию наблюдениями?

Почему бы нам не повторить то, что мы делали со звуком? Свисток паровоза продемонстрировал явное и безошибочно определяемое изменение тона свистка, когда свисток проносится мимо при скорости в одну десятую от скорости звука. Почему бы прожектору паровоза (излучающего свет определенной волны) не показать столь же определенное и безошибочно определяемое изменение цвета, когда паровоз проносится мимо со скоростью одной десятой скорости света?

Популярные книги

Газлайтер. Том 2

Володин Григорий
2. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 2

Любовь Носорога

Зайцева Мария
Любовные романы:
современные любовные романы
9.11
рейтинг книги
Любовь Носорога

Волк 4: Лихие 90-е

Киров Никита
4. Волков
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Волк 4: Лихие 90-е

Долгие дороги сказок (авторский сборник)

Сапегин Александр Павлович
Дороги сказок
Фантастика:
фэнтези
9.52
рейтинг книги
Долгие дороги сказок (авторский сборник)

Предатель. Вернуть любимую

Дали Мила
4. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Предатель. Вернуть любимую

Перерождение

Жгулёв Пётр Николаевич
9. Real-Rpg
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Перерождение

Соль этого лета

Рам Янка
1. Самбисты
Любовные романы:
современные любовные романы
6.00
рейтинг книги
Соль этого лета

Дракон

Бубела Олег Николаевич
5. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.31
рейтинг книги
Дракон

Титан империи 5

Артемов Александр Александрович
5. Титан Империи
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Титан империи 5

Последний Паладин. Том 2

Саваровский Роман
2. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 2

На границе империй. Том 10. Часть 1

INDIGO
Вселенная EVE Online
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 10. Часть 1

Внешники

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Внешники

Последний реанорец. Том I и Том II

Павлов Вел
1. Высшая Речь
Фантастика:
фэнтези
7.62
рейтинг книги
Последний реанорец. Том I и Том II

Сломанная кукла

Рам Янка
5. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сломанная кукла