Жар холодных числ и пафос бесстрастной логики
Шрифт:
Гильберта считают величайшим математиком XX века. Диапазон его работ внушает изумление. Он внес огромный вклад в теорию инвариантов групп и теорию алгебраических чисел, разработал основания геометрии, решил многие проблемы вариационного исчисления, исследовал вопросы дифференциальных уравнений, развил теорию интегральных уравнений, создал аппарат функционального анализа и поставил на новую основу математическую физику. Влияние Гильберта на современную ему математику было невероятным. Геттингенский университет, профессором которого он был с 1902 по 1930 год, стал мировой «Меккой математиков». В 1900 году на Втором Международном конгрессе математиков в Париже Гильберт делал обзорный доклад о проблемах математики в целом — вещь, на которую не отваживался больше никто. В этом знаменательном для истории науки докладе он выдвинул знаменитые двадцать три «проблемы Гильберта», задавшие исследователям работу на десятилетия и в некотором смысле определившие
Бунт Брауэра Гильберт воспринял как сигнал о неблагополучном положении во всем математическом хозяйстве и срочно стал искать средства ликвидировать возникшие неполадки. С начала двадцатых годов важнейшим делом Гильберта становятся исследования в области оснований математики. Эта работа тем более была ему сподручна, что еще в 1898 году он написал знаменитую книгу «Основания геометрии» (а в последующие годы опубликовал ряд работ по проблемам оснований математического знания). В этой книге подводился итог огромной работе математиков, физиков и философов в области осознания природы геометрической науки — работы, начатой еще создателями неэвклидовых геометрий. Для понимания той программы, которую Гильберт противопоставил плану Брауэра, полезно познакомиться с основным замыслом «Оснований геометрии»[11].
Работы Фреге ясно показали (хотя сам Фреге с этим не был согласен[12]): абстрактная (и тем более формальная, то есть основанная на формализованной логике) теория сама по себе не может быть «верной» или «неверной» с точки зрения содержания. Содержательные соображения получают право на существование только тогда, когда установлена интерпретация формальной системы, то есть когда система использована как схема каких-то «реальных» явлений. Но какова «природа» элементов абстрактной, формальной системы? В частности, что такое точки и прямые абстрактной геометрии?
Гильберт подробно осветил этот вопрос в своей книге. Точки, прямые и плоскости он назвал «тремя системами вещей», удовлетворяющих аксиомам геометрии. Таким образом, он объявил аксиомы скрытыми (неявными) определениями основных понятий некоторой абстрактной структуры. Точки, прямые и плоскости — это любые вещи, которые подчинены условиям, что для любых двух точек существует прямая и притом только одна, проходящая через каждую из этих точек; что через прямую и точку, на ней не лежащую, проходит одна и только одна плоскость, и т. д. Все это соответствовало естественному движению математики к аксиоматическому методу. Но оставалась нерешенная деталь: в чем все-таки состоит гарантия того, что система аксиом геометрии удовлетворяет требованию логически непротиворечивости? Ясно, что ссылки на применения геометрии к другим областям, ни разу не приводившие к противоречиям, не являются залогом того, что противоречия и впредь не возникнет. Чтобы с полным спокойствием применять геометрию в сфере физики и других конкретных наук, следовало бы иметь более строгие доказательства того, что этот аппарат с точки зрения своей внутренней структуры абсолютно надежен. Ведь система, в которой не возможно доказать некоторое положение и его отрицание, заведомо не годится ни для какой интерпретации. Гильберт показал, что непротиворечивость геометрии такова же, как и непротиворечивость арифметики, то есть, что если арифметика непротиворечива, то непротиворечива и геометрия. Итак, все замкнулось на арифметику.
Когда началось брожение математических умов, вызванное обнаружением парадоксов теории множеств и лозунгами Брауэра, Гильберт вновь вернулся к проблемам обоснования математики. Надо было продолжить работу с того пункта, на котором она была закончена, перейти к отысканию способов доказательства непротиворечивости арифметики. Но почему Гильберт рассматривал такое доказательство как решающий аргумент против интуиционизма?
Это было связано с его теорией «идеальных элементов» в математике. Гильберт принимал, что бесконечные множества не соответствуют ничему реальному в природе. Но ведь и в задачах, где исследуются целые числа, могут в промежуточных фазах вычисления встретиться дроби, которые тоже ничему в данном случае не соответствуют и которые в окончательный результат не войдут, они введены нами для удобства вычислений, из соображений формальной простоты и компактности. То же можно сказать о комплексных числах, встречающихся в уравнениях прогиба стержней. Комплексные числа не описывают непосредственно стержня, но, появляясь в промежуточных стадиях вычисления, сокращают путь решения задачи, делают решение лаконичным и простым. Иными словами, кратчайшая дорога, соединяющая области реальные, может пролегать по области «воображаемых» объектов — «идеальных элементов». Мы сможем без опаски пользоваться этими элементы ми, если докажем раз навсегда, что теория, построенная с их участием, не приведет к противоречию[13]. И тогда не нужно искать никакой «изначальной индукции» разума или других столь же туманных источников надежности математики. Ее надежность — это ее непротиворечивость, другие требования просто лишены смысла.
Попробуем проследить идейные основы концепции идеальных элементов» Гильберта.
Воспитанный в немецком университете профессорами, целиком принадлежавшими к поколению, считавшему теоретико-множественное мышление идеалом строгости, он и сам впитал смолоду этот образ мышления. Канторовская теория множеств рисовалась ему одним из величайших завоеваний человеческого гения. «Никто не сможет изгнать нас из рая, который создал нам Кантор», сказал Гильберт[14], осуждая попытки Брауэра я его учеников «развалить» математику.
Но Гильберт уже не верил в существование в каком-то «царстве идей» множеств множеств множеств. Гильберт просто считал, что такие понятия полезны для математики, в могуществе которой был глубоко убежден. В конце вступительной части своего исторического доклада о проблемах математической науки он произнес вдохновенные слова: «мы слышим внутри себя постоянный призыв: вот проблема, ищи решение. Ты можешь найти его с помощью чистого мышления, ибо в математике не существует Ignorabimus»[15]. Это был прямой вызов агностическим установкам в науке, так как выражение ignorabimus—«мы не будем знать» (лат.) было сказано физиологом Э. Дюбуа-Реймоном о некоторых нерешенных проблемах (касающихся взаимоотношения физиологического и психического).
Новаторство Гильберта проявилось как в том, что он объявил теоретико-множественные построения лишь вспомогательными элементами науки, так и в подробно развитом им подходе к основаниям математики, получившем название гильбертовского формализма и финитизма. Познакомимся с основным тезисом гильбертовского формализма из уст его автора.
Гильберт считал, что в качестве предварительного условия для осуществления логических умозаключений и выполнения логических операций в человеческом представлена уже должны быть даны определенные внелогические конкретные объекты — даны наглядно, в качестве непосредственных переживаний до какого бы то ни было мышления. «Для того чтобы логические выводы были надежны, эти объекты должны быть обозримы полностью во всех частях; их показания, их отличие, их следование, расположение одного из них наряду с другим дается непосредственно наглядно, одновременно с самими объектами, как нечто такое, что не может быть сведено к чему-либо другому и не нуждается в таком сведении. Это — та основная философская установка, которую я считаю обязательной как для математики, так и вообще для всякого научного мышления, понимания и общения и без которой совершенно невозможна умственная деятельность. В частности, в математике предметом нашего рассмотрения являются конкретные знаки сами по себе, облик которых... непосредственно ясен и может быть впоследствии узнаваем»[16].
Если глубоко вдуматься в это программное заявление, мы увидим, что перед нами, несомненно, плодотворный тезис. По существу, Гильберт утверждает здесь, что мышление, научная работа нуждаются в системе знаков, на которые могут опереться логические рассуждения. Знаки — внелогическая категория, утверждает Гильберт. В самом деле, ведь это материальные объекты, состоящие из засохшей типографской краски, из микроскопических ракушек, образующих мел, и т. п.
Они могут отображаться в представлении, в сознании, но в этом случае они выступают в качестве образов тех же материальных объектов. Для научного мышления представляют ценность не любые знаки, а такие, которые человек может уверенно отличать друг от друга или, наоборот, отождествлять друг с другом — только в этом случае их можно использовать для построения теории.
По поводу формализма Гильберта возникало немало недоразумений и неправильных его трактовок, поэтому мы дадим слово великому математику еще раз. Главное обвинение, которое бросали Гильберту в то время, состояло в том, что он будто бы превращает математику в пустую игру символов и тем самым исключает ее из факторов человеческой культуры. Вот что он отвечал по этому поводу:
«Эта игра формул допускает, что все содержание идей математической науки можно единообразно выразить и развить таким образом, чтобы вместе с тем соотношения и отдельные теоремы были понятны. Выставить общее требование, согласно которому отдельные формулы сами по себе должны быть изъяснимы, отнюдь не разумно; напротив, сущности теории соответствует, что при ее развитии нет необходимости, между прочим, возвращаться к наглядности или значимости. Физик как раз требует от теории, чтобы частные теоремы были выведены из законов природы или гипотез с помощью одних только умозаключений, не вводя при этом дальнейших условий, то есть. на основании чистой игры формул. Только известная часть комбинаций и следствий из физических законов может быть контролируема опытом, подобно тому как в моей теории доказательства только реальные высказывания могут быть непосредственно проверяемы»[17].