Чтение онлайн

на главную - закладки

Жанры

Жар холодных числ и пафос бесстрастной логики
Шрифт:

«Прежде всего мы должны уяснить все фазы сознания, совершающего переход от своих глубин к внешнему миру, в котором мы сотрудничаем и ищем взаимопонимания. Данное мое выступление вовсе не рассчитано на непременное наличие такого взаимопонимания, и, в некотором смысле, его можно рассматривать как монолог...

Сознание в своем глубинном убежище, как можно думать, медленно и пассивно совершает колебания между состояниями покоя и чувствования. По-видимому. лишь в состоянии чувствования становится возможным первый акт упомянутого перехода. Этим актом является движение времени. С помощью движения времени имеющееся в данный момент чувствование переходит в чувствование в другой момент, так что сознание

сохраняет первое как имевшееся в прошлом; более того, благодаря различению настоящего и прошедшего, сознание отходит от них обоих, выходит из пассивного состояния, и так возникает мышление.

В форме мышления сознание выступает как субъект, переживающий чувствование в настоящем — так же как и прошедшее чувствование — в качестве объекта. А путем повторения этого процесса удвоения объект может быть расширен до всего множественного и пестрого мира чувствований.

...Математика возникает в тот момент, когда субъект лишает это порождаемое движением времени удвоение всех качеств и когда остающаяся пустая форма общего субстрата всякого удвоения подвергается, в качестве глубинней математической интуиции, неограниченному раскрытию, порождая новые математические сущности в форме предопределенных или более или менее свободно формирующихся бесконечных последовательностей полученных прежде математических сущностей, и в форме математических видов, то есть свойств, которые мы предполагали присущими прежде полученным математическим сущностям и удовлетворяющим тому условию, что если они присущи определенной математической сущности, то они присущи и всем другим одинаковым с ней сущностям».

Обратим внимание на три важных вывода, следующих из аутентичного изложения платформы интуиционистской математики, которое мы только что привели. Во-первых, интуиция, о которой все время идет речь у Брауэра и его последователей, является интуицией разума, и ничего общего не имеет с мистической интуицией чувства, которая фигурирует у философов типа Ф.В. Шеллинга, К. Ясперса, Ж.П. Сартра и т. д.; математический интуиционизм есть нечто не похожее на философский интуитивизм. Он более родствен рационалистическому «интуиционизму» Декарта, выраженному, скажем, в следующих словах последнего:

«Под интуицией я разумею не веру в шаткое свидетельство чувств и не обманчивое суждение беспорядочного воображения, но понятие ясного и внимательного ума, настолько простое и отчетливое, что оно не оставляет никакого сомнения в том, что мы мыслим»[6]. Во-вторых, из слов Брауэра можно определенно заключить, что «глубинная интуиция» разума, порождающая математику, одинакова у всех людей; поэтому математика в этом смысле объективна, не произвольна. В-третьих, интуиция разума не зависит от языка; языковые средства нужны лишь для того, чтобы (не адекватно) сообщать результаты деятельности интуиции другим людям.

Анализируя эти установки Брауэра, нетрудно обнаружить их несоответствие с известными науке фактами. Данные современной психологии все увереннее говорят о том, что осознанного результата мыслительного акта не существует вне языка или, во всяком случае, вне какой-то знаковой системы. Принятие же одинаковости изначальной интуиции разума у всех людей очень напоминает утверждение Канта о неизбежности восприятия мира людьми через априорную категорию времени — утверждение, расходящееся с результатами психологических исследований поведения детей, в частности, исследования Ж. Пиаже и его школы[7].

Отечественное конструктивное направление, продолжающее критическую линию интуиционизма в отношении классической математики, отвергает философскую концепцию Брауэра. На место «интуиции» конструктивисты выдвигают понятие умственного построения, проясняемое с помощью понятия алгоритма (см. гл. 7). При этом, как указывает создатель отечественной школы конструктивной математики А. А. Марков, «умственные построения, такие, например, как построения все больших и больших натуральных чисел, обычно являются слепками с построений материальных, осуществляемых в окружающей нас действительности»[8].

Перейдем, однако, к чисто математическому аспекту брауэровской платформы. Ядром здесь является установка на конструктивность[9] и отрицание универсальности закона исключенного третьего — два положения, которые в интуиционистском истолковании являются родственными. Пример поможет понять сущность дела.

Возьмем теорему Больцано — Вейерштрасса о наличии у ограниченной числовой последовательности точки сгущения. Под точкой сгущения последовательности понимается точка числовой оси, к которой как угодно близко подходят точки, представляющие числа данной последовательности. Скажем, для последовательности 1/2, 1/3, 1/4, 1/5,...точкой сгущения является нулевая точка, так как какое бы сколь угодно малое положительное число е мы ни взяли, для него обязательно отыщется член нашей последовательности, отличающийся по своей абсолютной величине от нуля меньше, чем на е.

Теорема Больцано — Вейерштрасса доказывается с помощью дихотомии. Ограниченная последовательность (по определению) может быть целиком заключена в пределы некоторого отрезка числовой оси. Разделим этот отрезок пополам. По меньшей мере на одной из его половин (а может и на обеих) имеется бесконечное множество точек последовательности, иначе, если бы на обеих половинах было конечное число точек, то их вообще было бы конечное число, что противоречит предположению о бесконечности последовательности. Возьмем как раз ту половину, где имеется бесконечное множество точек последовательности, разделим ее снова пополам и повторим рассуждение. В конце концов (при бесконечном продолжении процесса) мы придем к единственной точке, принадлежащей всем нашим уменьшающимся вдвое отрезкам, — это и будет точка сгущения.

В самом деле: если предположить, что эта точка не есть точка сгущения, то вокруг нее существует некоторая зона, где нет точек нашей последовательности; но уменьшающиеся отрезки, каждый из которых содержит не одну, а бесконечное множество точек последовательности, стягиваются вокруг этой точки и рано или поздно войдут в любую зону, как бы мала она ни была. Противоречие и доказывает теорему[10].

Для интуициониста это рассуждение ничего не стоит. Ясно, скажет он, что мы не сможем фактически обнаружить тот отрезок, на котором расположено бесконечное множество членов последовательности. Действительно, как это сделать? Считать число членов, попавших на каждую из половин? Это приведет к цели лишь в том случае, если на одной из половин окажется конечное число членов: тогда мы возьмем другую половину. А если мы считаем, считаем и считаем — и все время и на одной и на другой половине будут обнаруживаться новые точки — тогда как быть? Ведь как бы долго ни происходил этот пересчет, мы не вправе заключить, что точек бесконечное множество: нет гарантии, что они через некоторое время не иссякнут. Поэтому построить точку сгущения таким способом невозможно. А раз так, то из нелепости предположения об отсутствии точки сгущения не следует ее наличие.

Учтя центральное положение теоремы Больцано—Вейерштрасса в дифференциальном исчислении и распространенность в анализе доказательств с подобной же схемой рассуждений, можно представить себе, в какое затрудни» тельное положение попадает математика, если такие рассуждения будут «запрещены» — объявлены нестрогими. Естественно, что программа Брауэра вызвала среди ведущих математиков того времени самое различное отношение - одни приветствовали ее (среди них был, например, Гермад Вейль, решительно выступивший в поддержку Брауэра), другие — а таких было большинство — выступили с резкими возражениями. Самым авторитетным оппонентом интуиционизма стал Давид Гильберт (1862—1943).

Поделиться:
Популярные книги

Внебрачный сын Миллиардера

Громова Арина
Любовные романы:
современные любовные романы
короткие любовные романы
5.00
рейтинг книги
Внебрачный сын Миллиардера

Вечная Война. Книга VII

Винокуров Юрий
7. Вечная Война
Фантастика:
юмористическая фантастика
космическая фантастика
5.75
рейтинг книги
Вечная Война. Книга VII

Калибр Личности 1

Голд Джон
1. Калибр Личности
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Калибр Личности 1

Усадьба леди Анны

Ром Полина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Усадьба леди Анны

Отмороженный 3.0

Гарцевич Евгений Александрович
3. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный 3.0

Довлатов. Сонный лекарь 3

Голд Джон
3. Не вывожу
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь 3

Мама из другого мира. Дела семейные и не только

Рыжая Ехидна
4. Королевский приют имени графа Тадеуса Оберона
Любовные романы:
любовно-фантастические романы
9.34
рейтинг книги
Мама из другого мира. Дела семейные и не только

Болотник

Панченко Андрей Алексеевич
1. Болотник
Фантастика:
попаданцы
альтернативная история
6.50
рейтинг книги
Болотник

Дочь моего друга

Тоцка Тала
2. Айдаровы
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Дочь моего друга

Назад в ссср 6

Дамиров Рафаэль
6. Курсант
Фантастика:
попаданцы
альтернативная история
6.00
рейтинг книги
Назад в ссср 6

Лучший из худших

Дашко Дмитрий
1. Лучший из худших
Фантастика:
фэнтези
попаданцы
5.25
рейтинг книги
Лучший из худших

Ротмистр Гордеев 2

Дашко Дмитрий
2. Ротмистр Гордеев
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Ротмистр Гордеев 2

Флеш Рояль

Тоцка Тала
Детективы:
триллеры
7.11
рейтинг книги
Флеш Рояль

Темный Патриарх Светлого Рода 7

Лисицин Евгений
7. Темный Патриарх Светлого Рода
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 7